Computer cooling fan toyota denso 89257 схема подключения

Опубликовано: 24.04.2024

Всем привет. Этот текст может помочь перестать быть волговодом, экономить копейки, ставить вентиляторы от жигулей, запускать вентилятор от термовыключателя и дрочить его туда-сюда в пробках.

Либо можно почитать и сделать как собирались изначально (см. выше).

Среди доноров 1uz-fe с vvti, две машины идут с гидровентилятором. Это Celsior UCF20/21, и Soarer UZZ30/31 (а также сарайкин брат — Lexus SC400). Обратите внимание что LS400 сюда не относится.

В этих машинах скорость вентилятора регулируется плавно, посредством ШИМ (Google) управления соленоидом давления. При этом в UCF21 все нужные функции встроены в блок управления ДВС, а для Soarer идёт отдельный полновесный блок управления вентилятором.

Если вам вдруг достался мотор и блок управления от UCF21, ничто не мешает запустить родную систему охлаждения. Не надо будет затыкать ошибки 56/57, почти нет лишних проводов, а сами вентиляторы очень дешевы. Система отказоустойчива — без управления клапан всегда открыт и скорость вентилятора максимальна. Отдельные блоки управления — доставаемы хоть и редкость, о них позже (выглядят — как на картинке ниже)

Итак открываем оригинальную схему на систему управления мотором цельса и вот что видим

все выводы системы подключаются на 26-контактную 2-рядную фишку
G5 HP — в нормальном состоянии коротить на массу. Иначе скорость вентилятора будет почти максимальной. Это вход датчика аварийного давления в системе кондиционера
G6 TH-
G7 TH+ — два входа от одного датчика температуры. Датчик идёт на низ радиатора. 89429-24020: 1.5k при 80 град, 700 Ом при 110 град
G8 SOL-
G9 SOL+ — между этими выводами подсоединить соленоид управления (расположен рядом с насосом вентилятора, работает от обводного ролика ремня вспомогательных агрегатов)

Собственно, всё, подрубаем шланги и вентилятор работает, не просаживая напряжение зарядки — которое на холостых и так невелико, см. предыдущие записи.

Есть, однако, вот какой момент. На почти всех более новых тоётах (например с мотором 3UZ) стоят только электровентиляторы, управляемые бесступенчато (плавно). Рядом с вентилятором расположен вот такой силовой блок

номер разный для разных машин, а вот выводы одинаковые (бывают блоки на 1 и 2 вентилятора).
В одну фишку втыкается силовой плюс, силовой минус и вход управления. А в другую — вентилятор (2 провода). Чего может быть проще?

Управление — ШИМ. Любой моторный блок управления от 3UZ (и даже один для 1UZ — от UZS17x) умеет выдавать такой сигнал, используя уже имеющиеся данные о температуре, от ДТОЖ системы управления ДВС.

Соответственно, применив смекалку, можно сделать плавное управление электровентилятором при любом свапе. Используя стандартные компоненты, проверенные серийным производством, а не всякие непонятные силычи — хуилычи.

Практические примеры применения данной статьи читайте здесь
www.drive2.ru/l/7015046/
www.drive2.ru/l/7843539/

p/s я обещал рассказать про отдельный (независимый, полнофункциональный) блок управления вентилятором системы охлаждения.
89257-30011 идет для гидровентилятора, а -30010, -30021 — для электро. Вот схема подключения для обоих

Доброго времени суток. Помогите разобраться.
Toyota Carina (улыбка) 2С
1. По схеме в букваре в машине 2 датчика включения вентилятора охлаждения.
Один в радиаторе. А второй где? В железном патрубке за головкой?
По схеме они соединены параллельно.

2. На фишке датчика в радиаторе есть минус на одном проводе (белый). На втором должен быть плюс?
Если должен то откуда он приходит? На втором проводе (синий) у меня ничего не звонится. Реле вентилятора в монтажном блоке исправно.

Адрес: Даурия 28Rus Сообщений 8,366 Адрес: Даурия 28Rus Сообщений 8,366

Значит так, значит два датчика. У япошек всё зависит от года выпуска , и даже месяца. Тем более у Вас есть схема . Там видно , что и куда подходит . Даже цвета проводов указаны.
Оба идут (синие (Bl) провода) через выключатель по давлению кондиционера на реле вентилятора . Работают на разрыв цепи .

Да, и судя по фишкам (как указано в схеме в моём букваре) так и есть. Датчик, с фишкой (J) (двухпроводной) находится в радиаторе а с однопроводной фишкой (k) за головкой.
Я так понимаю они друг друга дублируют? Диапазон температур у них одинаковый?
Тут проблема в чем: Всегда по температуре у меня срабатывал только один вентилятор. При демонтаже двигателя был сломан датчик за головкой.
Без него при включении зажигания стали срабатывать сразу оба вентилятора. Пока искал датчик на замену однопроводную фишку закоротил на массу. Вентиляторы включались только при включении кондиционера.
На сломаном датчике есть номер ND 6P 22 100.
По этому номеру он в каталогах не бьётся.
По схеме в каталоге я нашел этот датчик и купил его аналог. Он подошел по резьбе но у него другая фишка. И диапазон температур у него 70-77 градусов. Теперь оба вентилятора включаются при достижении температуры ОЖ 70 градусов.
Уже два года я бьюсь над этим.
Были заменены все три реле вентиляторов.
Выяснил, что датчик, который я купил - это датчик, через который работает клапан повышения оборотов двигателя (для климат-контроля). Поэтому и диапазон у него 70-77
Выяснил, что датчик в радиаторе не исправен (он постоянно разомкнут) и отсутствует плюс в фишке на радиаторный датчик.

Или я купил не тот датчик за головкой . Или тот датчик меняли до меня когда перестал работать датчик в радиаторе.
Смущает то, что провод на датчик за головкой белый. А рядом висит синий провод с плоской фишкой, на котором тоже ничего не прозванивается
У меня есть подозрение, что кто-то до меня наколхозил с проводкой.


У каждого дома скопилось немало компьютерных вентиляторов: кулеров от процессора, видеокарты и блоков питания ПК. Их можно поставить на замену сгоревшим, а можно подключить к блоку питания напрямую. Применений этому может быть масса: в качестве обдува в жаркую погоду, проветривание рабочее место от дыма при пайке, в электронных игрушках и так далее.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка проводов кулера 4 pin

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Здесь скорость вращения можно не только считывать, но и изменять. Это делается при помощи импульса от материнской платы. Он способен в режиме реального времени возвращать информацию на тахогенератор (3-х штырьковый на это неспособен, так как датчик и контроллер сидят на одной ветке питания).

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка разъёма кулера 3 pin

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка проводов кулера 2 pin

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Простейший кулер с двумя проводами. Наиболее частая цветность: чёрный и красный. Чёрный — рабочий «минус» платы, красный — питание 12 В.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Здесь катушки создают магнитной поле, которое заставляет ротор крутиться внутри магнитного поля, создаваемого магнитом, а датчик Холла оценивает вращение (положение) ротора.

Как подключить 3-pin кулер к 4-pin

Для подключения 3-pin кулера к 4-pin разъему на материнской плате для возможности программной регулировки оборотов служит вот такая схема:

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

При прямом подключении 3-х проводного вентилятора к 4-х контактному разъёму на материнке вентилятор будет всегда вращаться, потому как у материнской платы не будет возможности управления 3 pin вентилятором и регулировки числа оборотов кулера.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Подключение кулера к БП или батарейке

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Устройство и ремонт кулера ПК

Для того чтобы разобрать вентилятор, нужно снять наклеенный шильдик со стороны проводов, открыв доступ к резиновой заглушке, которую и извлекаем.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Подцепим пластмассовое или металлическое полукольцо любым предметом с острым концом (нож канцелярский, часовая отвёртка с плоским шлицем и т.п.) и снимаем с вала. Взору открывается моторчик, работающий от постоянного тока по бесщёточному принципу. На пластиковой основе ротора с крыльчаткой по кругу вокруг вала закреплен цельнометаллический магнит, на статоре — магнитопровод на медной катушке.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Затем почистите отверстие под ось и капните туда немного машинного масла, соберите обратно, поставьте заглушку (чтоб пыль не забивалась) и пользуйтесь уже гораздо более тихим вентилятором дальше.

У всех таких вентиляторов бесколлекторный механизм вращения: это надёжность, экономичность, бесшумность и возможность регулировки оборотов.

У современных кулеров разъёмы имеют гораздо меньший размер, где первый контакт пронумерован и является «минусом», второй «плюсом», третий передаёт данные о текущей скорости вращения крыльчатки, а четвёртый управляет скоростью вращения.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

кулир когда-то винтилировал ядра но всё было демонтировано и все же кулир помогал вносить не малую степень понимания в наше сознание жалко подключать было методом \тыка\ сгорит признательность правильно первым идёт 0 вторым шёл + но третий пока без надобности да и реле ещё нет

добрый день! а есть способ заставить вращаться его в другую сторону?

наверно плюс с минусом поменять надо, как на любом двигателе постоянного тока

Добрый день, все очень хорошо изложено автором, информативно и детально.

а через USB можно?

Большое спасибо за статью

Пожалуйста, рады были помочь.

А вручную можно регулировать скорость на 3-пиновом вентиляторе, подключенному в 4-пиновый разъем на материнке?

Внимание! Перед тем как создавать тему на форуме, воспользуйтесь поиском! Пользователь создавший тему, которая уже была, будет немедленно забанен! Читайте правила названия тем. Пользователи создавшие тему с непонятными заголовками, к примеру: "Помогите, Схема, Резистор, Хелп и т.п." также будут заблокированны навсегда. Пользователь создавший тему не по разделу форума будет немедленно забанен! Уважайте форум, и вас также будут уважать!

Присоединённое изображение


Присоединённое изображение (Нажмите для увеличения)

У этого вентилятора трехфазный моторчик скорее всего. Красный и черный на питание , при этом он будет маслать на всю мощь что имеет. остальные 2 провода- один из них регулировка скорости путем подачи шим сигнала частотой 20-25кгц (я собирал на 555 таймере) и оставшийся это выход для счетчика оборотов. Как то так.

Это сообщение отредактировал Marksheider - Dec 1 2016, 07:02 AM

интерфейс; четыре линии (ШИМ умный функция поддержки, автоматический контроль скорости доска)
51.9CFM windPressure: 88.4 mmh2o
уровень шума: до 65.6dB
: (желтый проводки положительный, черный отрицательный): вы можете использовать эти два подключения.

Проводки(мое предположение, возможно все и не так):
1-черный, Общий, Ground;
2-красный, +12В;
3-синий, управление управляющим транзистором, ШИМ, PWM, Control;
4-белый, датчик обротов, Sense.
В черном и красном проводках я уверен на 100%, а вот с синим и белым проводом, может быть так(как я написал), а может быть и наоборот. Посмотри осциллографом на неподключенном вентиляторе, откуда идут импульсы при вращении от руки. Это и будет провод датчика оборотов.
Подходит для обдува всего, чего угодно.

Это сообщение отредактировал Duke5 - Dec 1 2016, 11:29 AM

Присоединённое изображение

ШИМ там есть провод, он управляет управляющим транзистором. Я же привел схему. Ищи тогда схемы сам в Интернете, если неверишь.

Это сообщение отредактировал Duke5 - Dec 1 2016, 01:57 PM

Кто сказал - Интернет сказал. Сам посмотри. Я и сам не знал вчера.

Это сообщение отредактировал Duke5 - Dec 1 2016, 06:51 PM

Короче юзать этот вентилятор надо так. Подключаешь землю к общему проводу. Подключаешь красный провод к +12В. Смотришь крутится/не крутится. Пишешь о результатах сюда в форум.
Ищещь датчик обротов по методу кручения от руки и подключения осциллографа к синему/белому проводу. Допустим датчик оборотов - это будет белый провод. Тогда синий вешаешь на +12В и внутренний транзистор будет всегда открыт. Получаешь максимум оборотов. После всего этого вентилятор должен крутится. Ставлю себе 5. Все довольны.

Это сообщение отредактировал Duke5 - Dec 1 2016, 07:00 PM

Сначала просто питание, сабж должен как минимум заработать.
Потом посмотреть, на каком из проводов есть "тах"овый выход, на иной можно воздействовать - примыканием к нулю

Другой вариант:
Если сабж заточен под материнку - подключаем его, входим в биос и видим частоту его вращения.
Чтобы определится именно с "тах"овым выходом - отключаем неизвестные провода по одному..
Когда вращается и обороты кажут "нуль" - это выход. его нафиг
Обмеряем питание, последний оставшийся - это управление

Это Жэш обычный комповый управляемый вентилятор, немного способа научного тыка

добавлю: бывает к 3 пин материнке подключается 4 пин разъём кулера.
Поди и получается, что крайний пустующий и есть управление

Корпусные вентиляторы делятся по размерам, типу подшипников, количеству оборотов и даже по способу применения. Одни заточены для создания статического давления, а другие рассчитаны на хороший воздушный поток в корпусе. И самое интересное в том, что один и тот же вентилятор можно подключить с помощью разных коннекторов. Некоторые из них умеют регулировать скорость, а другие работают на полном ходу. Это влияет на комфорт при использовании компьютера. Чтобы подобрать правильный вентилятор, стоит хотя бы поверхностно изучить особенности и нюансы подключения.

Почему коннекторов так много

Немного истории

Когда компьютер только появился и назывался ЭВМ, транзисторы были размером со спичечный коробок, а сама вычислительная машина достигала размеров комнаты и даже квартиры. Если и было нужно охладить такую махину, то для этого использовались огромные промышленные вытяжки, поэтому никто даже не заикался о шуме и комфорте. То ли дело, когда глобальное и грозное «ЭВМ» обтесали, причесали и подкрасили, чтобы получился «компьютер».

Чуть позже серьезное изобретение совсем огламурили и стали ласково звать персональным компьютером. Спасибо Apple: им пришлось сделать многое, чтобы громоздкое чудовище превратилось в привлекательное для покупателей устройство. Другие компании, та же IBM, к примеру, тоже кое-чего добились на этом фронте.

Эти наработки в гонке за персональностью унифицировали и стандартизировали, чтобы мы получили компьютеры такими, какими они стали сейчас.

За уменьшением деталей последовало сокращение размеров корпуса. Спичечные коробки превратились в спички, а позже и вовсе в их десятую часть по размеру. Это, а также повышение мощностных характеристик, стало первым, что потребовало хорошего охлаждения.

Но одно дело охлаждать ЭВМ в шумных рабочих зданиях, другое — остудить мощный компактный компьютер на столе школьника.

Раньше ставили на первый план стабильность и надежность. Ну а жужжит оно — да и пусть. Даже не самые древние модели компьютеров не могут похвастать хорошей системой охлаждения.

Стандартный кулер на процессоре, гудящий блок питания с восьмидесятым вентилятором и парочка ноунейм вертушек в корпусе, подключенных то ли к материнской плате, то ли напрямую к линии 12 В. Лишь бы работало. И никакой регулировки оборотов. Включил, привык к шуму пылесоса — и работаешь. Да что там, под этот шум даже Quake и Unreal заходили на ура. Но, как мы знаем, желания растут, требования тоже.

Требования к комфорту и шуму стали двигать прогресс в будущее, туда, где мы находимся сейчас. Чтобы сочетать тишину, прохладу и мощность, пользователи начали заниматься доработками и улучшениями.

За неимением автоматической регулировки оборотов, в провода впаивали резисторы, чтобы хоть как-то приструнить завывающую вертушку. Энтузиасты придумали более изощренные способы регулировки и дошли до реобасов.

Тогда такие штуки не продавались, поэтому тихие системы были только у тех, кто уверенно пользовался паяльником. Позже эту идею подхватили производители железа и стали выпускать регуляторы в заводском исполнении. А потом реобасы встроили в материнские платы и научили регулировать шум через BIOS.

Чтобы все работало, как надо, вентилятору приделали «третью ногу». То есть, провод, по которому техника ориентируется в оборотах. Так работает трехпиновая регулировка по DC. Так сказать, аналоговый способ.

Он реализован очень просто. Любой компьютерный вентилятор крутится от 12 В. На таком вольтаже будут максимальные обороты. Чтобы их снизить, уменьшают напряжение до семи или даже пяти вольт. DC — это регулировка постоянным током. Постоянными 12 вольтами или 7, 5 и далее.

За снижением вольтажа стоит специальный контроллер на материнке, от которого вентилятору достается готовое питание. На рисунке постоянный ток изображен на верхнем графике, а для контраста внизу есть переменный ток:

Простая ламповая физика — меньше напряжение, меньше света. Однако даже такую технологию поддерживали не все материнки. То есть, поддерживали, но только для мониторинга оборотов. А вот регулировать могли уже не все.

Инженеры подумали и решили, что цифровой технике нужны цифровые технологии. И внедрили технологию PWM. Это уже другая история — про вентиляторы с четырымя проводами и новые материнские платы. Между прочим, массовое использование данной технологии началось почти одновременно с выходом процессоров на платформе LGA 775. Материнские платы научились поставлять комфорт «из коробки», и с тех пор рынок вентиляторов поделился на DC и PWM. Или ШИМ, если говорить по-русски.

Широтно-импульсная модуляция — совершенно новая технология, которая требует от вентилятора наличия еще одной «ноги». Первый провод — для массы, второй — для питания, третий — для мониторинга оборотов, а четвертый — для PWM (информационный канал).

Регулировка оборотов работает еще проще: на вентилятор подается постоянное напряжение 12 В и некая информация для контроллера. В этой информации содержатся команды по открытию и закрытию транзисторов в цепи питания вентилятора. То есть, задаются прерывания. На графике это можно представить так:

Вершинка — транзистор открыт, вентилятор получает все 12 вольт. Далее следует спад — закрытие транзистора и прекращение подачи вольтажа. Так как техника цифровая, то и работа заключается в цифрах, а точнее, в долях секунд. Чем больше наносекунд транзистор находится в открытом состоянии, тем дольше подается вольтаж. Все это продолжается в пределах одного промежутка времени и с очень высокой частотой. То есть, мы можем повторить весь этот процесс с обычным DC-вентилятором вручную, если будем включать и выключать его примерно 23 тысячи раз в секунду. Это соответствует частоте 20 кГц и больше. Таким образом, для достижения максимальной скорости транзистор должен все время быть открыт и скармливать вертушке его родные 12 вольт. Если нужны тишина и комфорт, то вольтаж подается прерывисто — определенное количество раз за период.

В теории переход от DC к PWM меняет не только электрические способности вентиляторов:

  • PWM-вентиляторы способны работать на более низких оборотах, снижая скорость практически до нуля;
  • Потребление таких вентиляторов уменьшается из-за повышенной чувствительности катушки;
  • КПД такой технологии выше из-за отсутствия потерь в преобразователе питания (который, собственно, в ШИМ не используется).

На практике же эти плюсы полностью зависят от качества элементной базы и исполнения самого вентилятора.

Надо сказать, что ШИМ применяется не только в вентиляторах. Даже сейчас мы наблюдаем ШИМ. Потому что в любом мониторе с диодной подсветкой применяется PWM для регулировки яркости. Вот наглядный пример и объяснение, как работает технология:

Зачем вентиляторам нужен Molex

Вообще, можно найти вентилятор с таким коннектором, что и подключить будет не к чему. Да и обычный можно положить на полочку, если коннекторы на нем и на материнке не совпадают. Такая путаница на рынке есть и будет, как была проблема с кучей зарядок для каждого телефона, пока microUSB не навел порядок.

Та же участь касается и разнообразия коннекторов. Это сейчас все регулируется, настраивается и вращается. А до некоторых пор производители оснащали четырьмя контактами только разъемы для процессорных кулеров. Остальные довольствовались тремя. Так прижился тандем DC/PWM до наших времен. И даже современные платы работают с обоими вариантами. Но бывает и такое, что разъемов просто не хватает для подключения достаточного количества вентиляторов. На помощь приходит молекс.

Molex выходит напрямую из БП и имеет четырехконтактный разъем с 12 и 5 вольтами, а также две «массы». К нему можно спокойно подцепить хоть десяток вентиляторов. Это решает проблему нехватки разъемов на материнке, чем страдают многие бюджетные модели, особенно в Micro-ATX и Mini-ITX. Но у такого подключения отсутствуют регулировка оборотов и мониторинг.

Чтобы не испортить комфорт, к которому шли десятилетиями, производители выпускают специальные модели, которые могут работать на пониженных оборотах. Это удобно для создания постоянного воздушного потока в корпусе. В таких случаях регулировка оборотов не требуется — минимальных оборотов на вдув и выдув достаточно для охлаждения системы в средней нагрузке. Зато остаются свободные пины на материнке для подключения оборотистых моделей, плюс снимается лишняя нагрузка с шины питания материнки. Тут уже каждый сам себе режиссер и придумывает сценарии использования разных разъемов сам.

Вертушки-самоцветы

Мы разобрали всего три типа коннекторов. Но бывают и другие. Например, шестиконтактные коннекторы. Это особенность самых технологичных вентиляторов. Нет, они не отличаются по характеристикам и не дуют морозом в жаркий день. Это обычные вентиляторы, но с подсветкой. Пожалуй, появление таких вентиляторов начинает новую эпоху компьютерных сборок. Как когда-то персональный компьютер превращали в комфортный, теперь комфортный ПК становится красивым.

Повальное распространение RGB в игровых сборках заставляет производителей добавлять подсветку везде. И, если наушники, мышь или клавиатура — это самостоятельные устройства и могут программироваться как угодно, то вентилятор — штука простая и не имеет встроенного контроллера для управления подсветкой. Поэтому настройкой и синхронизацией подсветки в пределах системного блока занимается материнская плата. Чтобы было красиво и по феншую, производители ввели еще несколько пинов, которые отвечают за управление подсветкой.

Причем возникла новая путаница. Каждый завел свою технологию и продвигает только ее. Это мешает собрать универсальную систему подсветки, поэтому выбор каждой детали в компьютере теперь обусловлен еще и поддержкой фирменных технологий. У Asus это Aura Sync, у Gigabyte — RGB Fusion, а MSI продвигает Mystic Light. Это только софтовая сторона вопроса.

В техническом же плане управление подсветкой различается еще и рабочим вольтажом, а также количеством пинов. Для управления подсветкой часто используют разъемы 12V-G-R-B, 5V-G-R-B или 5V-D-G. Они сильно отличаются и не имеют обратной совместимости. И вот почему.

Светодиоды бывают трех типов: одноцветные, RGB и ARGB. В первом и втором варианте это обычные диоды с одни или тремя катодами, которые управляются аналогово: 12 вольт для питания и по проводу на каждый цвет. ARGB или лента с адресным управлением работает на диодах со встроенными контроллерами.

В каждую лампочку встроен контроллер, который управляет ее яркостью и цветом по цифровому каналу. Обычно, это тип подключения 5V-D-G. Где 5V — 5 вольт, G — масса, а D — Digital Input. Тот самый DI, который передает информацию каждому контроллеру и диоду отдельно, адресно. Что умеют такие ленты:

Каждая лампочка управляется самостоятельно, поэтому может показать любой из миллиона цветов независимо, а также с разной яркостью.

Обычная RGB-лента тоже принимает различные оттенки, но делает это полностью:

Это ограничивает возможности кастомизации и уже перестает пользоваться спросом как в компьютерном сегменте, так и в промышленном, где основное применение ARGB-диоды находят в бегущих строках и мультимедийных баннерах.

В материнских платах управление подсветкой работает через один разъем. Чтобы подключить к нему несколько вентиляторов, используют внешние контроллеры или разветвители.

Контроллеры, к слову, тоже питаются от разъемов блока питания SATA или Molex.

Что предлагает современный вентилятор

Самое главное — компьютер стал персональным, комфортным и теперь уже красивым. Этот процесс превращения из чудовища в красавчика можно назвать эволюцией. Ей подверглись и технические особенности, и визуальные. Вентиляторы тоже подтянулись, чтобы существовать в одном стиле с платформой.

Что касается коннекторов для подключения, то основная часть вентиляторов до сих пор доступна со всеми вариантами подключения. А вот что сильно изменилось, так это ответная часть — управление на материнской плате.

Если раньше некоторые функции получали лишь топовые бренды и модели, а иногда и вовсе, только серверный сегмент, то постепенно эволюция дошла и до самых бюджетных систем. Материнские платы адаптировали под требования пользователей, поэтому большинство из них умеет теперь не только управлять скоростью и мониторить обороты, но и создавать невероятные эффекты с помощью подсветки. Это тоже можно записать в достижения эволюции: превращение вентилятора в современное умное устройство. Интересно представить, что же будет с повелителями воздуха дальше.

Читайте также: