Дмрв ниссан жук замена

Опубликовано: 18.05.2024

Ниссан Жук. Датчик массового расхода воздуха: признаки неисправности

Расходомер воздуха в автомобиле, как и все компоненты в нем, подвержены дефектам. Этот электронный компонент в машине также называют ДМРВ - датчик массового расхода воздуха.

Этот важный датчик устанавливается, как правило, в систему впуска двигателя и располагается между корпусом воздушного фильтра и дроссельной заслонкой. Причем этим датчиком оснащаются как бензиновые, так и дизельные автомобили.

С помощью расходомера воздуха электронный блок управления двигателем определяет массу всасываемого двигателем воздуха. На основе данных с датчика электроника регулирует впрыск топлива, которое в необходимом количестве, должно быть смешано с поступающим кислородом. Это позволяет создавать в камере сгорания двигателя оптимальную топливную смесь для идеального сгорания.


Датчик массового расхода воздуха часто становится причиной появления ошибок в электронике автомобиля, что в итоге отражается на работе двигателя. Например, если расходомер воздуха в машине неисправен, то двигатель машины перестает работать в оптимальном режиме. В результате в большинстве случаев мотор начинает работать в аварийном режиме, а на приборной панели появляется предупреждающий значок "Чек двигателя".
Расходомер воздуха является чрезвычайно чувствительным компонентом, то он часто может быстро выходить из строя при неправильной установке. Именно поэтому мы не рекомендуем самостоятельную замену датчика.

Признаки неисправности расходомера воздуха (ДМРВ)

Датчик массового расхода воздуха не только важен для мощности вашего автомобиля, но и необходим для регулирования минимального уровня загрязняющих веществ в выхлопной системе машины. Если расходомер воздуха неисправен или загрязнен, он не будет давать правильные показания блоку управления двигателем. Итог: оптимальное количество топлива не будет подаваться в камеру сгорания.

В результате может получиться так, что система впрыска топлива будет подавать в камеру сгорания или впускной канал двигателя либо слишком мало, либо слишком много топлива.

Обычно при неисправности ДМРВ симптомы варьируются от потери мощности, потери плавности хода и нестабильности оборотов двигателя на холостом ходу, до осечек в системе зажигания и неправильного выхлопа. Иногда из-за поломки датчика массового расхода воздуха из выхлопной трубы может идти черный дым.

Однако обращаем ваше внимание, что подобные признаки могут появиться и при других неисправностях автомобиля. Например, похожие симптомы поломки могут быть при неисправности турбокомпрессора или из-за неисправности системы зажигания. Поэтому эти признаки неисправности не могут являться 100% индикаторами выхода из строя датчика расхода воздуха.

При определенных обстоятельствах, если датчик массового расхода воздуха начинает работать неправильно, двигатель автомобиля обычно переходит в аварийный режим (аварийную программу). При этом, как правило, на приборной панели автомобиля появляется значок "Чек двигателя".

Эта программа необходима, чтобы защитить мотор от повреждений и сохранить более-менее чистый выхлоп насколько это возможно. Естественно, при этом происходит уменьшение мощности двигателя. Чтобы владелец машины знал, что мотор перешел в аварийную программу и придуман значок на приборке "Чек двигателя".

Также с появлением "Чек двигателя" в электронной системе автомобиля в памяти записывается код ошибки, с помощью которой при диагностике можно узнать причину включения аварийной программы работы силового агрегата.

Проверка расходомера воздуха

Так как неисправность датчика массового расхода воздуха приводит к аварийному режиму работы мотора, а также к появлению в памяти компьютера автомобиля ошибки неисправности, самым надежным способом выяснить причину появления значка на приборной панели "Чек двигателя" является электронная диагностика автомобиля. Во время этой диагностики через специальный разъем специалист подключает оборудование для считывания из системы машины возникших ошибок.

Бывает так, что в памяти компьютера автомобиля нет активных ошибок. В этом случае необходим визуальный осмотр расходомера воздуха. Правда в большинстве случаев, визуальный осмотр не сможет точно установить неисправность датчика. В этом случае обычно автомастера предлагают владельцам установить для теста рабочий ДМРВ и проверить как поведет себя машина с новым датчиком. Естественно, если после тестирования выяснится, что признаки неисправности ушли, то старый датчик однозначно работал неправильно.

Правда этот способ подходит только, если мастер на 99% уверен, что причина плохой работы двигателя является неисправность ДМРВ. Дело в том, что не всегда у автослесаря найдется в запасах рабочий ДМРВ для вашей модели автомобиля.
В этом случае вам придется купить новый датчик.

Самым же простым тестом для проверки работоспособности датчика массового расхода воздуха является простое испытание, которое может сделать любой.
Для этого вам необходимо обесточить датчик.

Если двигатель после отключения расходомера воздуха стал работать лучше, то, скорее всего, ДМРВ неисправен. Однако этот тест, к сожалению, подходит не для всех автомобилей.

Причины дефектов в расходомере воздуха

Расходомер воздуха является износостойким компонентом в машине. Но ничто не вечно в нашем мире. Естественно, чем больше пробег машины, тем больше изнашивается запчастей. Это касается и датчика массового расхода воздуха. Например, по мере увеличения пробега автомобиля с каждым разом ДМРВ посылает блоку управления двигателем все больше неверных значений.

И рано или поздно ДМРВ выйдет из строя. К сожалению, на первых порах вы можете не заметить неправильную работу мотора. Но по мере увеличения износа датчика вы начнете замечать, что автомобиль ведет себя неправильно. Во-первых, первым признаком неисправности ДМРВ является заметное увеличение расхода топлива.

Но не всегда выход из строя датчика расхода воздуха связан с большим пробегом машины. Иногда расходомер воздуха может выйти из строя очень рано.

Например, если вы часто ездите быстро в сильный дождь, то вода может проходить через воздушный фильтр попадая на датчик массового расхода воздуха.

В итоге, вода может в короткий срок привести к дефекту датчика. Кроме того, датчик может быстро выйти из строя из-за негерметичности системы впуска или из-за несвоевременной замены воздушного фильтра. Дело в том, что если на датчик будет попадать песок и другая грязь из фильтра или с улицы, то он не сможет долго работать исправно.

Датчик массового расхода воздуха (ДМРВ ) или MAF – прибор, анализирующий состав топливной смеси для определения объема (массы) содержания в ней воздуха. По его показаниям, а также используя данные сопутствующих приборов, контрольный электронный блок регулирует содержание воздуха в конечном составе смеси.

Способы проверки дмрв на Ниссан

Устройство, по сути, представляет собой термоанемометр сопротивления, где сверхчувствительная платиновая нить помещена на пути всасываемого воздушного потока. По изменяющимся параметрам электрического тока, под охлаждающим воздействием воздуха, определяется его объем.

Окончательный расчет массы воздуха осуществляется в блоке управления ЭБУ. Дело в том, что с датчика ДМРВ поступают сведения о массовых долях топлива и воздуха в смеси, на основе которого контрольный блок проводит расчет самой массы.

Забегая вперед, отметим, что этот параметр является основным в контроле длительности раскрытия форсунок.

Основные группы датчиков авто Air Flow Sensors

На электронный блок управления могут поступать аналоговые или цифровые сигналы от датчиков расхода воздуха, в зависимости от типа реализации.

При существующем многообразии конструкций, эти устройства подразделяют на две большие группы:

  • Датчики объема воздуха
  • Датчики массы воздуха

Виды датчиков воздуха

Ниссановские дмрв первого типа имеют относительно простое устройство, и рассчитывают объем воздуха. А масса любого газообразного вещества в данном объеме может различаться, в зависимости от давления и температуры. Поэтому блоку управления для окончательных расчетов, требуются дополнительные данные о температуре и давлении в системе. Учитывая погрешности каждого из датчиков этих показателей, расчет массы тоже будет не идеальный, а с некоторой погрешностью. Как следствие, будет некорректным и расчет массы подаваемого топлива в порцию смеси для впрыска.

Как работает дмрв ниссан

На Ниссанах дмрв располагается за фильтром, до заслонки дросселя. На входе воздушный поток подвергается равномерному распределению с помощью решетки – сот.

Как работает дмрв на Ниссан

Чувствительный элемент прибора представляет собой пластину или проволоку, которая нагревается до определенной температуры под действием, протекающего по нему, электрического тока. Когда воздушный поток его охлаждает, увеличивается мощность (а значит и напряжение и сила) тока, для нагревания элемента до исходной температуры. При том, чем интенсивнее воздушный поток (а значит и больше его объем), тем сильнее он охлаждает элемент, и тем значительнее изменения параметров электрического тока.

Стехиометрическая или нормальная смесь имеет пропорции 14,7/1 воздуха и горючего. Расходометр измеряет не количество кислорода (или любого другого химического элемента), величину показателей (напряжения, силы и мощности) электрического тока, необходимого для согрева охлажденного чувствительного элемента датчика. Поршни втягивают воздушный поток в цилиндры, а датчик температуры воздуха (ДТВ) фиксирует его температуру. Это полупроводниковый резистор, где заложена резкая зависимость электрического сопротивления от температуры воздуха (чем ниже t, тем выше сопротивление, а значит и напряжение в ДТВ).

Его неисправная работа слабо отражается на рабочих параметрах двигателя, однако, ощутимо увеличивает потребление горючего. Кстати, если вы заметите такое изменение и затруднение ускорения движения, то в первую очередь проверьте исправность дмрв. На Ниссанах это будет сопровождаться включением «CHECK ENGINE» на приборном щитке, так как ЭБУ зафиксирует и сохранит код ошибки. Если не устранить ошибку, то в двигатель будет поступать излишне обогащенная топливом смесь, что в разы увеличит расход бензина.

Итак, параметры мощности электрического тока становятся мерой массы протекающего воздушного потока. Эта величина преобразуется в аналоговый или цифровой сигнал и отправляется в ЭБУ.

Основываясь на полученные сигналы, тот задает точный временной промежуток открытого положения заслонок, регулируя, тем самым, объем подачи горючего в смесь с оптимальным составом. Помимо этого, управляющий блок корректирует температурные и оборотные параметры, крутящий момент и иные показатели, оптимизируя работу мотора.

Все признаки неисправности дмрв Ниссан

Надо сразу предупредить, что на Ниссанах ЭБУ определяет не ухудшение работы ДМРВ, а стадию полного выхода из строя. Зажигается ЧЕК, а во время тестирования считываются коды ошибок: Р0101, Р0102, Р0103.

Однако, когда датчик не «сдох», а только работает с ухудшенными параметрами (посылает неправильную информацию), для ЭБУ фактический его статус определяется как исправный и происходит только некая корректировка работы связанных систем.

Водитель сам может понять изменения в работе датчика по ухудшению работы мотора – появление нестабильности при обычных режимах, затруднение холостого хода, увеличение расхода горючего (плохо тянет, приходится сильнее давить на газ), уменьшение податливости двигателя (глохнет сразу после запуска).

На автомобилях Ниссан отклонения от нормы сигналов с ДМРВ могут быть вызваны:

— нестабильное напряжение питания

— попадание лишнего воздуха в воздушные пути

— ухудшение параметров самого датчика.

Попадание сторонних частичек на чувствительный элемент, отложение загрязнений (вследствие загрязнения фильтров), различные повреждения (определяются неизменными показателями выходного напряжения).

Способы проверки ДМРВ Ниссан

  1. С помощью диагностических сканеров. Замеряются основные показатели (напряжения, обороты, реакцию двигателя, положения валов, и некоторых иных), определяется отклонение от нормальных параметров (сравниваются с эталонными показателями).
  2. При содействии различных измерительных приборов и вспомогательного оборудования. К их числу можно отнести дифференциальный осциллографический щуп. Измерения проводят в три захода:

— замеряется время переходного процесса в момент, когда включается зажигание. Переходный процесс формируется в период между подачей напряжения на пластину датчика и до его полного нагревания до заданных величин. Необходимое для этого время сильно увеличивается при неисправном датчике, в силу различных причин

— измеряется напряжение, при отсутствии подачи воздуха. При неработающем двигателе величина напряжения, при нулевом воздушном потоке, равна 1В (погрешность 0,2В).

— снятие показателей напряжения при перегазовке. Прогреть двигатель, перевести трансмиссию на нейтральное положение. На пару секунд резко нажать педаль газа. Происходит резкое открытие заслонки дросселя, и впуску воздушного потока. Это приводит к изменению напряжения, максимальное значение которого при исправной работе датчика должно составлять 4В. На осциллограмме исправного датчика фиксируется резкое возрастание линии напряжения. Когда есть загрязнения или иные причины некорректной работы датчика, график имеет размытые границы минимумов и максимумов скачка напряжения, он, как будто, «разглаженный». На нем величина напряжения не доходит до 4В.

  1. Воспользоваться опытом бывалых умельцев. Советы по распознаванию неисправности по отклонениям параметров от нормы исправного датчика при работающем моторе. Например: напряжение – если его значение превышает 1,035 (норма – 0,996), то информацию такой датчик сильно искажает, и скорее всего, имеет место засорение чувствительной пластины. Так же, можно понять степень неисправности датчика по отклонениям параметров при работе двигателя на разных оборотах. В таком случае отсоединение датчика от блока управления приводит к улучшению работы мотора. Можно принять решение об однозначной замене ДМРВ. Еще опытные умельцы советуют протестировать работу двигателя, временно подключив новый датчик, и если отклонения незначительные, то не спешите с заменой собственного прибора.
  2. Провести анализ выхлопных газов. Однако за эти параметры отвечает не только ДМРВ, но и лямбда – зонд. Поэтому этот способ не очень надежный.

Восстановление и увеличение срока эксплуатации ДМРВ Ниссан

Этот прибор является одним из самых дорогостоящих среди всех датчиков в автомобиле Ниссан. Бережное его эксплуатирование, а так же своевременные меры по очистке, помогут продлить жизнь устройства и избежать больших денежных затрат.

  1. Периодически промывать специальными спреями и средствами проводящую нить и всю полость прибора. При этом категорически запрещается лезть туда всякими посторонними предметами: ухочистками, спичками, ватными дисками и т. д. Во избежание химического растворения различных соединений и контактов, а также резиновых частей, не рекомендуется промывать кетон- и ацетонсодержащими жидкостями. Тут подойдет любая жидкость для очистки карбюратора. Не стоит и продувать «внутренность» датчика – можно повредить как саму нить, так и его контакты.
  2. Вовремя сменять воздушные фильтры, которые адсорбируют на себе львиную долю загрязнений, проникающих с воздушным потоком.
  3. Следить за изношенностью колец на поршне. Сквозь щели в резиновой основе колец на платиновый чувствительный элемент датчика попадают частички масла, образуя нагар, приводящий к полной поломке устройства.

Если диагностировали окончательную и полную поломку ДМРВ на Nissan, его надо менять, ремонту такое устройство не подлежит.

ДМРВ Nissan Juke
ДМРВ Nissan Juke

Если ошибка p0101 появляется вместе с другими ошибками, сначала проведите диагностику по этим ошибкам. Ошибка P0101 указывает на недостоверную работу датчика массового расхода воздуха (ДМРВ) Nissan Juke.

- Высокое напряжение от ДМРВ при малом расходе воздуха;

- Низкое напряжение от ДМРВ при большом расходе воздуха;

1) Поврежден разъем либо проводка к датчику массового расхода воздуха (ДМРВ)

2) Подсос воздуха в обход ДМРВ

3) Неисправен ДМРВ

4) Датчик давления EVAP

5) Датчик температуры впускного воздуха 1

Nissan Juke - подкапотное пространство
Nissan Juke - подкапотное пространство

Рис. 1 - расположение элементов подкапотного пространства Nissan Juke 2016 (16 - Датчик массового расхода воздуха)

Процедура диагностики

1) Проверьте гофру от воздушного фильтра до впускного коллектора, а также вакуумные шланги на герметичность.

2) Проверьте напряжение питания датчика массового расхода воздуха (ДМРВ). Измерьте напряжение между контактом (5) коннектора ДМРВ и кузовом авто. Измеренное напряжение должно равняться напряжению АКБ. Если ДА - переходите к ШАГУ 4, если НЕТ к ШАГУ 3.

Распиновка разъема ДМРВ

Рис. 2 - Распиновка коннектора ДМРВ

3) Проверьте электрическую цепь питания (плюс) от контакта (5) коннектора ДМРВ до контакта (35) монтажного блока IPDM. Распиновку блока IPDM смотрите на странице http://kipdoc.ru/nissan/464-nissan-juke-oshibka-p0090.html.

4) Проверьте электрическую цепь питания (землю) от контакта (4) коннектора ДМРВ до контакта (9) электронного блока управления двигателем. Распиновку ЭБУ смотрите на странице http://kipdoc.ru/nissan/464-nissan-juke-oshibka-p0090.html.

5) Проверьте электрическую цепь сигнала ДМРВ от контакта (3) коннектора ДМРВ до контакта (13) электронного блока управления двигателем. Распиновку ЭБУ смотрите на странице http://kipdoc.ru/nissan/464-nissan-juke-oshibka-p0090.html.

6) Проверьте датчик температуры впускного воздуха 1 (встроен в ДМРВ). Для этого измерьте сопротивление между контактами (1) и (2) ДМРВ. Сопротивление должно равняться 1,8 - 2,2 кОм при температуре 25°C. Если НЕТ, замените ДМРВ.

7) Проверьте датчик давления EVAP (система улавливания паров бензина). Снимите датчик с EVAP canister (адсорбера) и с помощью вакуумного насоса проведите проверку датчика. Измерьте напряжение на датчике при разном давлении согласно таблице. При несоответствии замените датчик давления EVAP.

Не создавайте вакуум менее -1 кгс/см2 или давление более 1 кгс/см2.

Контакты датчика EVAP Давление Напряжение
1 2 насос не подключен 0,5 - 4,6 В
-0,272 кгс/см2 2,1 - 2,5 В

Система улавливания паров бензина (EVAP)
Система улавливания паров бензина (EVAP)

Рис. 3 - Система улавливания паров бензина (EVAP) Nissan Juke

8) Проверьте датчик массового расхода воздуха. Для этого проверьте напряжение датчика через диагностическую программу (параметр "MAS A/F SE-B1" в программе CONSULT). Если нет диагностической программы измерьте напряжение на коннекторе ДМРВ между контактами (3) и (4) согласно таблице.

Если полученные данные не соответствуют таблице, то возможны следующие причины:

- Негерметична система впуска от воздушного фильтра до впускного коллектора.

- Неисправное уплотнение корпуса воздушного фильтра

- Загрязнен воздушный фильтр

- Отложения на дроссельной заслонке

- Неправильная установка элементов системы впуска воздуха

После замены или ремонта неисправной части снова произведите измерения согласно таблице выше. Если результаты вновь не соответствуют таблице, то замените датчик массового расхода воздуха.

Единая тема ДМРВ (датчик массового расхода воздуха, MAF, МАФ): проверка, замена

MASS AIR FLOW = ДМРВ в сборе с частью впускного коллектора.
дорестайлинг (10/2000 - 06/2003, QR20DE) 22680-6N200 он же 22680-6N201 он же 22680-6N20A - от 11 до 20 тыс руб, покупать не надо.
послерестайлинг (06/2003 - . QR20DE) 22680-CA000 - 9,5 ты руб, покупать не надо.

MASS AIR FLOW SENSOR = только сам датчик ДМРВ, его и надо покупать.
дорестайлинг (10/2000 - 06/2003 QR20DE, датчик производства Bosch) 22680-6N211 он же 22680-6N21A, от 3900 руб.
послерестайлинг (06/2003 - . QR20DE, датчик производства Hitachi) 22680-7S000 (это hitachi afh70m-38, он же 22680-7S00A) от 3200 руб

Замены (неоригинал) брать смысла нет - характеристики их могут сильно отличаться, на форуме уже получен негативный опыт. См Единая тема ДМРВ (датчик массового расхода воздуха, MAF, МАФ): проверка, замена и выше.

ДМРВ нельзя мыть ничем, кроме чистого спирта или специального средства для мытья ДМРВ. В этой ветке уже есть описание погубленных при мытье ДМРВ.

Пожелания/замечание пишите в ветке.

Файл-справочник Hitachi по применимости их МАФ ко всем Ниссанам прилагаю.
E-afs_nissan.pdf

kaskas
-------------
Вот показания какие должны быть
На холостых
0.7 - 1.1V (QR20DE)
0.8 - 1.2V (QR25DE)
На 2500 об.мин.
Engine speed is 2,500 rpm
1.4 - 1.9V (QR20DE)
1.6 - 1.9V (QR25DE)

От модератора: это инфа для рестайлинговых авто (Япония с 06.2003, Европа с 09.2003). Более точно см сообщение от Vlad24Krsk Единая тема ДМРВ (датчик массового расхода воздуха, MAF, МАФ): проверка, замена

для Т31 с двигателем QR25DE:
включенное зажигание - около 0.4В
на холостом ходу при прогретом до 80 градусов двигателе - 0.8-1.2В
при увеличении оборотов с холостых до 4000 - линейное увеличение напряжения от 0.9-1.2В до около 2.4В

для Т31 с двигателем QR20DE:
включенное зажигание - около 0.4В
на холостом ходу при прогретом до 80 градусов двигателе - 0.9-1.2В
при увеличении оборотов с холостых до 4000 - линейное увеличение напряжения от 0.9-1.2В до около 2.4В

для Т31 с двигателем M9R:
включенное зажигание - около 0.4В
на холостом ходу при прогретом до 80 градусов двигателе - 1.1-1.4В
при увеличении оборотов с холостых до 4000 - линейное увеличение напряжения от 1.1-1.4В до около 4.0В


1. Кнопки круиз-контроля на рулевом колесе 2. Датчик уровня топлива, топливный фильтр и топливный насос в сборе 3. Выключатель положения педали тормоза 4. Выключатель фонарей стоп-сигнала, 5. Выключатель положения педали сцепления 6. Датчик положения педали акселератора 7. G-датчик 8. Угольный фильтр EVAP 9. Блок управления топливным насосом (FPCM) A. Под задним сиденьем справа B. Рядом с педалями C. Под сиденьем водителя D. Под топливным баком слева E. За нижней боковой отделкой багажного отсека (слева) , : Перед автомобиля





1. Кнопки круиз-контроля на рулевом колесе 2. Датчик уровня топлива, топливный фильтр и топливный насос в сборе 3. Выключатель фонарей стоп-сигнала 4. Выключатель положения педали тормоза 5. Датчик положения педали акселератора 6. Угольный фильтр EVAP А. Под задним сиденьем справа B. Рядом с педалями C. Над задней главной передачей сборе

Для моделей с двигателями HR15DE и HR16DE


1. Микропроцессорный распределительный блок питания в моторном отсеке (IPDM). 2. Датчик тока аккумуляторной батареи (с датчиком температуры аккумуляторной батареи). 3, Датчик массового расхода воздуха (с датчиком температуры воздуха на впуске). 4. Привод электронной дроссельной заслонки (со встроенным датчиком положения дроссельной заслонки).5. Электромагнитный продувочный клапан системы улавливания паров топлива. 6. Датчик давления хладагента. 7. Мотор вентилятора системы охлаждения. 8. Электронный блок управления двигателем.

эбу

Место расположения ЭБУ в моторном отсеке


1. Катушка зажигания №4 (с выходным транзистором) 2. Катушка зажигания №3 (с выходным транзистором). 3. Катушка зажигания №2 (с выходным транзистором). 4. Катушка зажигания №1 (с выходным транзистором). 5. Клапан принудительной вентиляции картера. 6. Электромагнитный клапан фазовращателя впускного распредвала. 7, Датчик давления моторного масла. 8. Датчик температуры моторного масла. 9, Датчик детонации. 10. Датчик температуры охлаждающей жидкости. 11. Датчик положения впускного распределительного вала. 12. Датчик положения выпускного распределительного вала. 13. Электромагнитный клапан фазовращателя выпускного распределительного вала, 14. Топливная форсунка №1 (передняя) 15. Топливная форсунка №1 (задняя). 16. Топливная форсунка №2 (передняя). 17. Топливная форсунка №2 (задняя). 18. Топливная форсунка №3 (передняя). 19. Топливная форсунка №3 (задняя). 20. Топливная форсунка №4 (передняя). 21. Топливная форсунка №4 (задняя). 22. Датчик положения коленчатого вала. А. Передняя правая сторона двигателя. В. Вид на двигатель слева С. Задняя правая сторона двигателя.

схема эсуд


Блок-схема ЭСУД с распределенным впрыском автомобиля Nissan Juke

схема топливоподачи и эбу


Блок-схема системы управления топливоподачей

Частота холостого хода

Момент зажигания

Вычисляемое значение нагрузки

Датчик массового расхода воздуха

ДЛЯ МОДЕЛЕЙ С ДВИГАТЕЛЕМ MR16DDT



1. Привод управления наддувом. 2. Элеткромагнитный клапан управления наддувом турбокомпрессора. 3. Датчик топливовоздушной смеси №1. 4. Клапан рециркуляции. 5. Электромагнитный продувочный клапан системы улавливания паров топлива, в. Промежуточный охладитель, 7. Датчик давления хладагента. В. Мотор системы охлаждения. 9. Блок управления вентилятором радиатора. 10. Привод электронной дроссельной заслонки (со встроенным датчиком положения дроссельной заслонки). 11. Блок реле (реле вентилятора радиатора, реле топливных форсунок, реле топливного насоса). 12. Датчик атмосферного давления. 13. Электронный блок управления двигателем. 14. Микропроцессорный распределительный блок питания в моторном отсеке (IPDM). 15. Датчик тока аккумуляторной батареи (с датчиком температуры аккумуляторной батареи). 16. Датчик массового расхода воздуха (с датчиком температуры впускаемого воздуха №1). 17. Датчик наддува турбокомпрессора (сдатчиком температуры впускаемого воздуха №2).


1. Датчик положения фазовращателя выпускного распредвала. 2. Катушки зажигания (с выходными транзисторами). 3. Датчик топливовоздушной смеси № 1. 4. Клапан принудительной вентиляции картера. 5. Электромагнитный клапан фазовращателя выпускного распределительного вала. 6. Электромагнитный клапан фазовращателя впускного распределительного вала. 7. Датчик положения распределительного вала (датчик фаз). 8. Топливный насос высокого давления. 9. Топливные форсунки. 10. Датчик температуры моторного масла. 11. Датчик положения коленчатого вала. 12. Датчик давления моторного масла. 13. Датчик детонации. 14. Датчик давления в топливной рампе. 15. Датчик температуры охлаждающей жидкости. А. Левая сторона блока цилиндров. В. Задняя часть двигателя.

Частота холостого хода

*: под данным состоянием подразумевается выключенный кондиционер, выключенные электроприборы (освещение, вентиляция и подогрев заднего окна) и рулевое колесо в положении, соответствующем прямолинейному движению автомобиля.

Момент зажигания

Вычисляемое значение нагрузки

Датчик массового расхода воздуха

*: двигатель прогрет до нормальной рабочей температуры и работает без нагрузки.

ДЛЯ МОДЕЛЕЙ С ДИЗЕЛЬНЫМ ДВИГАТЕЛЕМ К9К


1. Топливоподающий насос. 2. Электромагнитный клапан управления наддувом турбокомпрессора. 3. Мотор вентилятора радиатора 4. Датчик давления хладагента. 5. Микропроцессорный распределительный блок питания в моторном отсеке (IPDM). 6. Электронный блок управления двигателем. 7. Датчик массового расхода воздуха (с датчиком температуры впускаемого воздуха). 8. Привод электронной дроссельной заслонки. 9. Датчик наддува турбокомпрессора


1. Термоплунжер. 2. Реле предпускового подогрева. 3. Блок управления термоплунжером


1. Клапан управления рециркуляцией отработавших газов 2. Датчик давления выхлопных газов № 1. 3. Датчик давления выхлопных газов №2. 4. Топливная форсунка. 5. Датчик температуры топлива, в. Топливный насос высокого давления 7. Свечи накаливания 8. Датчик давления в Топливной рампе. 9. Клапан отсечки подачи топлива; 10. Датчик положения распределительного вала. 11. Датчик температуры охлаждающей жидкости 12. Датчик положения коленчатого вала. 13. Датчик температуры выхлопных газов №1.

Частота холостого хода

Специальный инструмент и приспособления для ремонта ЭСУД

Читайте также: