Переделка генератора ваз в электродвигатель

Опубликовано: 02.07.2024


Разбираем тыл генератора. /Фото: youtube.com.

Первым делом необходимо избавить заднюю часть генератора от пластикового кожуха. Под ним находится трехфазный мост выпрямительных диодов, которые расположены на радиаторе. Там же расположен щеточный узел с контроллером регулировки выходного напряжения. Когда это будет сделано, откручивается также радиатор с диодами. Следом отпиливаем щетки контроллера.

Отсоединяем все части. /Фото: youtube.com.

Большинство генераторов построено по типу коллекторного двигателя и имеет 6 выводов, 3 обмотки на стартере. Нам необходимо последовательно соединить друг с другом все обмотки между собой. Как только это будет сделано, получим в свое распоряжение 12В трехфазовый двигатель 1.5 кВт.

Соединяем скрутки. /Фото: youtube.com.

Для того, чтобы им можно было управлять, рекомендуется использовать контроллер от велосипеда, который в оригинальном устройстве используется для взаимодействия с мотор-колесом. Приобрести такой можно в сети за сущие копейки. Напряжение может быть любым, рассчитано на работу не ниже 12В. Правда, мощность контроллера ни в коем случае не должна быть меньше уже упомянутых 1.5 кВт.

Собираем и можно использовать. /Фото: youtube.com.

Для того, чтобы запустить генератор как электродвигатель, на его коллектор необходимо сначала подать постоянное напряжение. Это означает, что на щеточный узел нужно будет установить в самом конце на то место, откуда он был снят ранее. После этого двигатель можно подключать, например, к аккумулятору.

Процесс создания во всех подробностях можно увидеть в видеоматериале ниже.

Видео:

В продолжение темы читайте про 5 возможностей батарейки , которая сгодится не только для пульта от телевизора.

Мотор из генератора

Многие из нас, видя проезжающие по городу электро- скутеры, велосипеды или самокаты, с завистью оборачиваются вслед. Еще бы, пользоваться любимым транспортным средством прилагая минимум усилий – мечта каждого. Вот только стоят они весьма недешево. Вот тут-то и возникает мысль: а нельзя ли переделать свой велосипед в электрический?

Необходимым элементом для переделки является безщеточный мотор постоянного тока (BLDC), но его цена на рынке достаточно высока. В нашей статье мы расскажем вам, как сделать такой мотор из генератора своими руками. Это значительно уменьшит расходы на переделку велосипеда. Ведь б/у генератор в хорошем состоянии можно недорого купить на любой автомобильной разборке.

Материалы для работы

Для того, чтобы сделать мотор из генератора, вам понадобятся:

  • старый автомобильный генератор;
  • плоскогубцы, набор ключей и отверток;
  • контроллер регуляторов оборотов;
  • паяльник;
  • провода;
  • две аккумуляторные батареи на 6В;
  • мультиметр;
  • подшипники (при необходимости их замены).

Шаг 1. Разбираем автомобильный генератор

Раскручиваем четыре длинных болта, соединяющих генератор.

Отсоединяем регулятор напряжения (реле-регулятор в сборе со щетками) и снимаем его.

Отсоединяем регулятор напряжения

Придерживая шкив, отворачиваем гайку крепления и снимаем его.

Снимаем все шайбы, крыльчатку и вынимаем шпонку.

Снимаем все шайбы, крыльчатку и вынимаем шпонку

Снимаем переднюю крышку, вынимаем ротор с коллектором и подшипники.

вынимаем ротор с коллектором

Откручиваем статор от задней крышки и выпрямительного блока и вынимаем его.

Отсоединяем и удаляем блок выпрямителей (диодный мост).

Отсоединяем и удаляем блок выпрямителей

Залуживаем их и припаиваем к ним провода.

Залуживаем их и припаиваем к ним провода

Отсоединяем два контакта реле-регулятора от щеток и так же припаиваем к ним провода.

припаиваем к ним провода

Шаг 2. Собираем мотор

Соединяем провода статора в жгут и вставляем его в заднюю крышку.

Соединяем провода статора в жгут

Ставим на место ротор с коллектором и подшипниками, надеваем переднюю крышку и стягиваем все длинными болтами.

Присоединяем на место щеточный блок.

Присоединяем на место щеточный блок

Ставим на место шпонку, одеваем крыльчатку, шайбы и шкив и затягиваем все гайкой.

Шаг 3. Проводим испытание

Подключаем выводы со щеток мотора к одному аккумулятору, а выводы со статора, через контроллер регуляторов оборотов – к другому.

В результате мы из старого автомобильного генератора получили BLDC мотор с возможностью регулировки оборотов.


Решил провести эксперимент, по возможности использования генератора от легкового автомобиля, как тягового двигателя с прямым приводом на колесо, для велосипеда или что-либо подобного.
У меня как раз есть исправный генератор, но использовать его в автомобиль я не могу, как и некоторые другие вещи, но зато попробую провести этот эксперимент сам. В интернете на специализированных форумах есть размышления, что так не делают, что и в конструкции генератора специально особым образом подобраны формы ротора и статора, для работы его как генератора. Да и наличие отдельной катушки возбуждения усложняет конструкцию. Но из достоинств – генератор не создает практически никаких сопротивлений вращению, если на него не подан ток, и он есть за бесплатно. Заниматься самому математическим анализом реализации такой возможности, нет достаточного опыта и данных, пока (если кто разложит все по полочкам — буду признателен).
Схема подключения генератора:


Генератор был аккуратно разобран:


Из него был удален диодный мост и схема регулятора напряжения, подключены провода к обмоткам генератора, и щеточному узлу катушки возбуждения:


Затем все было собрано аккуратно и стало иметь такой вид:


Скрепка – торчащая из задней крышки генератора, фиксирует подпружиненные щетки в заглубленном состоянии, что позволяет правильно установить заднюю крышку, ничего не сломав. Затем скрепка вытягивается, и щетки упираются в коллектор.

Далее, из имеющегося блока электроусилителя руля, работающего на трехфазный мотор, изымаем блок силовых транзисторов. К сожалению, использовать его как полноценный блок управления трехфазным мотором (BLDC) нельзя.


Поэтому подключим блок силовых транзисторов к имеющейся плате 2CAN (описано ранее), через самодельную плату с драйверами управления транзисторами. А так как лето у нас короткое, то плата сделана самым простым и быстрым проверенным способом лазерной печати и утюга:


Общая схема получилась примерно такая:


Так как на плате 2CAN разведены не все выводы платы и микроконтроллера, пришлось добавить соединений навесным монтажом:


Написана простая программа управления трехфазным двигателем, используя таймер №1.Пока решил не использовать датчики положения ротора, ограничившись только регулировкой частоты вращения и заполнением ШИМ (амплитуду синусоид). Если генератор покажет оптимистичные характеристики, то тогда и усложню схему и программу. Форму напряжения выбрал синусоидальную, коэффициенты для таймера рассчитал простой программой на javascript, (позволяет писать программы в любом текстовом редакторе и запускать на выполнение любым браузером), файл sine.html (в zip) прилагаю ниже.

При открытии его браузером, можно просмотреть значения, и скопировать в буфер обмена:

Такая конструкция получилось в итоге:


Форма результирующего напряжения двух фаз такая (осциллограф двухлучевой к сожалению):


(после простого R-C фильтра для щупа осциллографа), а так без фильтра на прямую:


В качестве источника питания был выбран аккумулятор 12В 7А, через предохранитель 30 Ампер питание подавалось на схему. Обороты генератора, которые меня интересовали, были в пределах от 0 до 420 оборотов в минуту. Исходя из того, что если на шкив генератора надеть колесо диаметром 20 см, и при этом скорость максимальную ограничить в 16км/час. Подключим генератор:


Примитивным способом оценить крутящий момент, развиваемый генератором, решили с помощью поднятия груза, подвешенного за веревку к шкиву генератора.


Далее все расчеты довольно примитивны, и возможно есть ошибки. В качестве груза выбрал две 5-литровых емкости с водой. При диаметре шкива 5,5см, генератор с уверенно поднимал этот груз при 50 % заполнении ШИМ таймера на высоту 50 см за 3 секунды. Ток от аккумулятора составлял порядка 16 Ампер, но и напряжение на нем падало до 11 Вольт (слабоват аккумулятор). Получается, гарантирован крутящий момент примерно 2,75 ньютона на метр, при 3 оборотах в секунду. Сила тяги генератора с колесом диаметром 20см, одетого напрямую на вал, составила бы 12,5 ньютона (условная скорость составила бы примерно 7км/час). Для ребёнка, стоящего на роликах может быть и хватит. Для реализации полной мощности потребовался бы аккумулятор большей емкости, и более толстые провода. Без нагрузки, генератор вращается без подачи тока на катушку возбуждения (как несинхронный трехфазный электродвигатель). По идее, учитывая, что при потребляемой мощности в 176 ватт, получаем мощность на совершение работы, очень примерно оцененной в 16 Ватт, КПД полученного устройства не радует. Даже если удастся увеличить КПД использованием датчиков положения ротора в два -три раза, тяга маловата все таки для взрослого человека. Значительная часть тока тратится на катушку возбуждения, при этом, в зависимости от нагрузки, оборотов и температуры генератора составляет это порядка 5 — 12 Ампер. Да и генератор в родном рабочем режиме крутится на горазбо более высоких оборотах (2100 — 18000 об/мин). Выходить на рабочие токи больше 30 Ампер в схеме посчитал нецелесообразным. Конечно, используя мотор с постоянными магнитами, можно значительно поднять КПД устройства. Но все равно, значительные токи в узлах схемы, при напряжении питания в 12 Вольт, не позволяют добиться приемлемых параметров при длительной работе мотора в тяговом режиме. А перематывать катушки статора генератора под другое напряжение, количество оборотов, делать ротор с неодимовыми магнитами — это уже надо быть сильно мотивированным на это. Практичнее переходить на готовые, относительно легко доступные BLDC моторы для велосипедов, скутеров и т.д. с напряжением 36 Вольт и более. Также был подключен оригинальный двигатель, и это совсем другая тема и возможности:


В автомобильных вентиляторах охлаждения, часто применяются двухфазные электродвигатели с постоянными магнитами, выдавая мощность под 300ватт (но коррозия и большие токи зачастую выводят из строя компактную схему управления, встроенную в мотор).

Других целей больше не было, остался удовлетворенным полученным отрицательным результатом :)

Приведу настройки таймера:


А табличные значения получаем как написано выше (редактируем имя распечатываемого на экран массива ) :) Плохо что видео нельзя тут приложить, довольно забавно. Если есть вопросы – без проблем задавайте, пишите :)

С уважением, Астанин Сергей, ICQ 164487932.

Добавил сам проект, правда внутри много лишнего осталось от проекта общения по CAN, но мотору не мешает.

Андрей делится своим рецептом приготовления велосипеда на электрическом ходу из подручных материалов. И он не пошел простым путем, заказав готовый набор с электроколесом у китайцев, а сделал двигатель из старого генератора от Жигулей.


Однажды, еще будучи обычным деревенским школьником, в автомобильном журнале я увидел небольшую заметку о электровелосипеде, построенным каким-то иностранным энтузиастом, и который умел разгоняться до 40 км/ч и имел запас хода в 70 километров. После этой небольшой заметки я бросил безуспешные попытки завести старый двигатель от бензопилы Дружба и понял, что будущее наступило. На дворе было начало двухтысячных.

Потом была учеба в ВУЗе, и первая постоянная работа. Работа была не ахти какая, 4-хдневка сменялась трехдневкой, времени было много, а денег мало, и мысли потихоньку снова возвращались к идее построить электровелосипед. Интернет был мне не так доступен как сейчас, да и он, интернет, не был завален таким количеством информации по самодельному и не очень самодельному электротранспорту, не было такого количества всевозможных комплектующих. И в голове рождались сумасшедшие идеи и фантастические конструкции из болгарок, электрорубанков, стартеров… Помню даже была идея разместить на ободе неодимовые магниты, а на перьях с двух сторон от колеса электромагниты.

Невоплощенная мысль то забывалась, то разгоралась с новой силой, но потребовалось еще лет 10 для того, чтобы она начала превращаться в реальность.

Я не пошел стандартным для многих путем — купить готовый набор и установить его на велосипед. Во-первых, потому, что не готов был тратить значительные суммы на покупку комплекта, а во-вторых, это бы точно не удовлетворило жажды конструирования и созидания. Вообще, я изначально поставил цель построить велосипед мощностью под 1 кВт с бюджетом 10 000р. Вполне амбициозная цель.

Итак, на тот момент у меня уже был «горный» велосипед Forward Sporting 103, тяжелый, стальной, с зубастым протектором, он хорошо ехал по любому бездорожью, даже по булыжникам на обочине трассы, но очень плохо ездил по гладкому асфальту, издавая почти самолетное жужжание, нарастающее с ростом скорости, протектор покрышек очень быстро съедал накат. Но он верой и правдой служит уже больше 10 лет. Конечно, это идеальный вариант для электрификации).

Из одного полезного сайта про электротранспорт узнал, что автомобильный генератор, оказывается, прекрасно работает в режиме мотора с дешевыми китайскими контроллерами для мотор-колес. В гараже как раз валялся генератор на 80 ампер от вазовской классики. Карты сошлись, старая мечта вспыхнула с новой силой, и я понял, что пора!

Тут же с одного китайского интернет-магазина были заказаны:

  1. Аккумуляторы 18650 – 2.6 а*ч, 40 шт
  2. Плата балансировки и защиты – 1шт
  3. Бессенсорный контроллер для электросамокатов на 1 квт номинальной мощности
  4. Вольт-, ампер-, ваттметр с вынесенным шунтом
  5. DC-DC преобразователь, умеющий делать из 60вольт 12

На местном базаре были куплены:

  1. Трещотка (вместе с задней осью)
  2. Цепь велосипедная
  3. Звездочка на 10 зубов от веломотора F50

В гараже были найдены звездочка от велосипеда передняя – на 48 зубов, задняя на 22 зуба, куски прямоугольных труб, болты, гайки, провода, изолента и прочая мелочь.

Изначально было решено пожертвовать рекуперацией в пользу сохранения наката и легкого педального хода, считаю эту функцию более полезной в плане увеличения пробега. Передняя звездочка от советского велосипеда теперь стала задней звездой электробайка. Левый фривил не нашел, поэтому обычная правая трещетка была переделана на левое вращение – с помощью бормашинки и алмазной шарошки были переделаны посадочные места собачек, а сами собачки развернуты в другую сторону.

Корпус трещотки немного расточен для посадки на левую сторону колеса, туда, где барабан колеса выходит за пределы фланца. У многих велосипедов без дисковых тормозов там достаточно места для установки такого самодельного фривила. У 48 зубовой звездочки была отрезана педаль, и средняя часть была выпилена болгаркой. Звезда соединена с трещоткой винтами с гайками. Вся эта конструкция крепится к колесу как задняя звездочка любого бензодырчика – длинными болтами через спицы и резиновые прокладки, изнутри в межспицевое пространство колеса вставляются полушайбы и все сжимается, крепко обхватывая с двух сторон фланец колеса.



На вал генератора нужно установить звездочку на 10 зубов, для этого я приварил ее к гайке, которая раньше крепила шкив генератора. Гайка навинчивается на вал генератора, и сверлится насквозь вместе с валом и в получившееся отверстие вставляется длинный винт м6 с гайкой на конце.

Звездочки от веломотора пришлось немного обточить бормашиной – их зубья расчитаны на более широкую цепь.

Передаточного отношения 10/48 не хватит для резвого старта, будет чрезмерное потребление энергии, я это на тот момент уже прекрасно понимал. Требуется повысить передаточное число. Готового редуктора я не нашел, различные решения на основе редукторов дрелей/болгарок отмел сразу, хоть и мощности они передают сопоставимые, но эти мощности получаются за счет высоких оборотов, мне же требовалось передавать большой крутящий момент при сравнительно низких — до 3 тыс. в минуту – оборотах.

Поэтому было решено сделать промежуточный вал.

Изначально планируемая компоновка с мотором над задним колесом была отметена. Не хотелось терять возможность возить какой-нибудь багаж, ну или закрепить там детское кресло. Нужно было разместить все в треугольнике рамы. После многочисленных примерок была изготовлена рама для двигателя и промежуточного вала.



Промежуточный вал, изготовленный из строительной шпильки, вращается в двух подшипниках, и передает вращение с правой стороны рамы на левую. Звездочки крепятся так же как на валу мотора – они приварены к гайкам, зашплинтованным на валу винтами м6.

Общее передаточное число получилось 10.56. На этом с механической частью пожалуй все.

Батарея имеет конфигурацию 13S3P- 48 вольт и емкость 7.8а*ч, собрана из 39 банок 18650.
Банки спаяны паяльником 60 вт кратковременными касаниями. В процессе одна банка зашипела – то ли перегрел, то ли в газовый клапан попала паяльная кислота, благо акумов было 40 штук, а потребовалось 39.


Электрическая часть отличается от классического электровелосипеда необходимостью постоянного питания якоря генератора — ведь мой мотор, в отличие от готового мотор-колеса, не имеет постоянных магнитов. Задачу понижения батарейного напряжения до требуемого якорю, выполняет понижающий DC-DC преобразователь, который переваривает до 60 вольт входного и выдает регулируемое выходное напряжение.


В остальном ничего необычного – батарея, контроллер, ручка газа в виде переменного резистора даже пока без возврата в исходное положение)…. Китайский ваттметр с синей подсветкой в качестве бортового компьютера для контроля разряда батареи….


Но, несмотря на то, что это все больше похоже на самоходную бомбу, это поехало, и поехало весьма неплохо. С моим весом 75 кг в первую выездку удалось разогнаться до 37,7км/ч. Ускорение получилось весьма резвое, максималка тоже устраивает. Запас хода получился небольшой — в смешанном цикле с резвыми разгонами до максималки и ездой внатяг с небольшой скоростью вокруг гаража удалось выжать 10 км без помощи педалями, впрочем для батареи это был только первый цикл заряд – разряд. Ваттметр показал 350 с чем то ватт-часов, и напряжение 40 вольт в конце цикла.

Какие выявились недостатки? Ясно, что все провода надо собрать в жгуты, это пока еще только стенд для ходовых испытаний. Цепь в первичной передаче весьма шумит, требует натяжителя-успокоителя, но скорее всего буду переделывать на зубчатый ремень. Нужна ручка газа – в планах сделать в виде курка, с концевиком, запитывающим якорь только в момент нажатия. И целого отдельного исследования требует возможность регулирования мотора током якоря — это второй канал управления двигателем. Да, у моего двигателя нет постоянных магнитов, зато есть электромагнит, индукцию которого мы можем менять в широких пределах. Преимущество ли это? Не знаю. Ведь якорь требует дополнительной электрической мощности 30-50 вт. Зато, не меняя передаточного числа механической трансмиссии, мы можем менять характеристику мотора в широчайших пределах. Повышение тока на якоре снижает обороты, но повышает крутящий момент, понижение же — наоборот, повышает обороты, но понижает момент. Может быть, получится оптимально настроить его под свою конфигурацию «железа»? Или как вариант вывести регулятор на руль и получить этакую электронную коробку передач – на разгоне и на подъемах повышать тягу, а на прямых участках и больших скоростях повышать обороты, таким образом выжимая из своей конфигурации максимум. У кого есть мысли, как можно всесторонне исследовать эту тему? Сейчас думаю над методологией.

Немного о зарядном устройстве. Моя батарея требует зарядного напряжения 54 в при токе до 3 ампер. Для зарядки был приобретен регулируемый повышающий DC-DC преобразователь – вход от 12 до 50 вольт, выход от 12 до 60.


Ему на вход подается 12 вольт выпрямленного напряжения от блока питания для светодиодных лент. Этот блок питания может выдавать до 12 ампер. Все собрано в корпусе из фанеры, сделанном на самодельном лазерном резаке, снабжено регуляторами тока и напряжения и вольтамперметром. В корпусе установлены два кулера – один работает на вход, другой на выход воздуха, таким образом, наиболее горячие части (радиаторы) обоих электронных блоков постоянно обдуваются. Зарядное устройство используется также для периодической подзарядки автомобильного аккумулятора. Весьма полезная в хозяйстве вещь получилась!




Доволен ли я результатом – более чем! Ведь при таких характеристиках удалось получить работоспособный аппарат с неплохими характеристиками с бюджетом меньше 10 000р!

Подобной компоновки я нигде на просторах интернета не встречал. Но она дает возможность каждому самодельщику за совсем небольшие деньги получить вполне неплохой электротранспорт, превосходящий по характеристикам, как мне кажется, многие серийные образцы, прикоснуться к этому увлекательному и, безусловно, прогрессивному направлению развития техники, получить радость творчества и незабываемое ощущение от езды на электротяге…

Интересный способ использовать генератор в режиме двигателя:

1) к выводам обмотки подключаем соответствующие плечи выходного каскада контроллера

2) на обмотку возбуждения подаем нормированный ток

Диодную сборку можно было не снимать, её всё равно необходимо будет поставить.

Оно работает т.к. генератор - синхронная электрическая машина, обратимая, т.е. можно привод использовать и генератором, и двигателем.

ПС: заказал в свои щупальца плату BLDC-контроллера (без всего)

Дубликаты не найдены

Использовалась звезда или треугольник? Хотелось бы увидеть цЫферки. Мощность и КПД, которые были получены в режиме двигателя.

Не так давно кто-то из крупных мировых автопроизводителей наконец-то внедрил в автомобиль комбинированный стартер/генератор. Непонятно только почему не лет 10-15 назад?

Буренков К. Э. Интегрированный стартер-генератор – основа перспективных конструкций автомобиля / К. Э. Буренков, Ю. А. Купеев, А. Н. Агафонов // Автотракторное электрооборудование. 2001. № 3–4. С. 23.

а сам файл можно почитать, он свежее, тут:

Часто моторгенераторы, стартергенераторы используют в

гибридах. Или в авто с системой Старт-Стоп.

Тоже интересный файл:

Я долго думал ,чтоб такое сострить в сторону автора ,который это "изобрёл", но там было много мата и что-то про физику 8-9 класса. А вообще электродвигатель в роли электродвигателя имеет КПД побольше. И если уж на то пошло то лучше использовать стартер.

КПД обусловлено физическими характеристиками электрической машины и от смены режима работы характеристики не меняются, как и КПД.

Копируй уж тогда полностью)

Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

Это не копия, это здравый смысл.

Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

В вашей копипасте подразумеваются различные эл. машины, а не одина и та же. Из общего у них: чем используемый в качестве генератора соответствующий по размерам электродвигатель

А вообще электродвигатель в роли электродвигателя имеет КПД побольше.

Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

В видео явно используются электрогенератор в качестве двигателя, что по копипасте с вики, якобы делает его чуть более КПДедистым, нежели электродвигатель, используемый в качестве генератора(на самом деле - нет, т.к. для генерации и движения используется одна и та же эл. машина).

Я и не говорил про одну машину я сказал, что для электродвижения эффективнее использовать электродвигатель.

Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

На самом деле нужно сравнивать конкретные цифры, а не на пустом слове делать выводы.

И если уж на то пошло то лучше использовать стартер.

Стартер не подойдет по ряду причин:

Низкооборотистый - нужен редуктор

Контактная группа быстро выйдет из строя - КТ имеет разделенные сегменты обмоток, что очень быстро скушает щетки

И, самый весомый - КПД, у стартера он низкий, всего пара десятков %%.

Друг, я говорю о том, что есть ЭЛЕКТРОДВИГАТЕЛИ и есть ГЕНЕРАТОРЫ, и что при невероятной, даже ЧУДОВИЩНОЙ, схожести между собой они имеют РАЗЛИЧИЯ. Вы же толи читаете по диагонали, толи словоблудствуете ибо фразу:

нужно читать целиком, а не вырывая КЛЮЧЕВЫЕ слова, а именно:

электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

Никто не оспаривает этот постулат.

и что при невероятной, даже ЧУДОВИЩНОЙ, схожести между собой они имеют РАЗЛИЧИЯ.

Здесь есть здравый смысл, заточить изделие под задачу.

Но я исхожу из мысли, что мы используем одну эл. машину как в режиме генератора, так и двигателя, а не два разных вида эл.машин.

электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

Верно, но из этой фразы мы имеем:

1) Электрогенератор будет иметь больший КПД.

2) Электрогенератор будет иметь меньшие габариты при том же КПД, что и сравнимый по КПД электродвигатель.

3) Нигде в этой фразе нет упоминания, что КПД генератора в режиме двигателя будет хуже.

4) Что в видео из генератора делают двигатель, по КПД не хуже, чем из двигателя сделать генератор.

5) Используя разные эл. машины получим разный КПД.

Теперь смотрим на ваше изначальное предложение:

А вообще электродвигатель в роли электродвигателя имеет КПД побольше. И если уж на то пошло то лучше использовать стартер.

И, как минимум, оно не вписывается в ваши текущие выводы

2). по вашей логике

Это не по моей логике, это выводы из вашей цитат(ы).

3) Нигде в этой фразе нет упоминания, что КПД генератора в режиме двигателя будет хуже - но как двигатель он хуже.

"КПД не хуже, но как двигатель хуже". Вы определитесь.

Вот как мы с тобой выглядим.

Иллюстрация к комментарию

Ионолеты: в небо на ионном ветре

На наших глазах электроэнергия начинает играть все большую роль в транспорте. Вслед за электромобилями, успешно отвоевывающими себе место на дорогах, в небо поднимаются электросамолеты. Но для авиации такие изменения могут иметь далекоидущие последствия. Вполне возможно, что самолеты завтрашнего дня будут поднимать в небо не электромоторы, а атмосферные ионные двигатели. Появление ионолетов обещает качественный прорыв в авиатехнике.

Ионолеты: в небо на ионном ветре Авиация, Ионный двигатель, Двигатель, Левитация, Электричество, Лифтер, Длиннопост

Что это такое?

Сегодня ионолет, он же ионокрафт (или лифтер, с ударением на последнем слоге), – это только легкая летающая модель, способная мгновенно оторваться от поверхности, как только на провод, соединяющий ее с источником питания, будет подан электрический ток. Но для инженеров и фантастов это один из вариантов летательного аппарата будущего, имеющего весьма заманчивые характеристики. Он будет экологически чистым, в отличие от современных самолетов и вертолетов, бесшумным и без значительных усилий сможет вертикально взлетать и садиться. Во всяком случае, так его представляют исследователи. Не это ли технология для летающих автомобилей будущего?

Вот только если бы дело было в гравитации, а не в движении заряженных ионов воздуха, как есть на самом деле, то устройство одинаково хорошо работало бы как в воздушной среде, так и в вакууме. Но в результате множества опытов было установлено, что в отсутствие газовой среды устройство не работает. В вакууме эффект исчезает. Здесь не стоит путать ионолет (атмосферный ионный двигатель) с ионными двигателями, все чаще применяемыми в космических аппаратах. Они-то как раз и предназначены для работы в вакууме. Такой двигатель свободно работает в безвоздушной среде, так как реактивная тяга возникает на базе запасенного рабочего тела, которым, как правило, является инертный газ (аргон, ксенон и т. п.). Им космический аппарат заправляют до старта. В случае ионолета его рабочим телом фактически является забортный воздух, который, разумеется, с собой брать в полет не надо.

Секрет подъемной силы ионолета прост. При очень высоком напряжении межу электродами – анодом и катодом – возникает ионный (или электростатический) ветер. Это явление также называется электрогидродинамическим эффектом (ЭГД). Причем один электрод, как правило, тонкий или острый, другой – широкий и плоский. То есть они не симметричны друг другу. Таким образом, получается левитирующий асимметричный воздушный конденсатор.

Ионолеты: в небо на ионном ветре Авиация, Ионный двигатель, Двигатель, Левитация, Электричество, Лифтер, Длиннопост

Один из вариантов модели ионолета / © jlnlabs

Около отрицательно заряженного электрода молекулы воздуха ионизируются. Они получают отрицательный заряд и начинают двигаться к электроду с положительным зарядом. При этом они увлекают на своем пути нейтральные молекулы воздуха, чем и создается необходимая тяга для полета. Причем полной ионизации проходящего через аппарат воздуха не требуется.

Простейшая схема летательного аппарата выглядит следующим образом. Отрицательно заряженные электроды представляют собой металлические острия. Их несколько, и они расположены над металлической сеткой с положительным зарядом. Образовывающиеся между ними ионы устремляются к сетке, где и расстаются со своим зарядом, выходя из двигателя уже обычными молекулами воздуха. Тем самым электроэнергия высокого напряжения преобразуется в кинетическую энергию воздушного потока. Такой ионный двигатель еще называют электростатическим движителем (ЭСД).

Регулируя напряжение на электродах, можно дать команду на взлет и посадку, изменяя напряжение только на некоторых электродах, можно наклонять и поворачивать аппарат. И при этом никаких движущихся частей двигатель на ионном ветре не имеет. Конструкция проста, а перспективные варианты движителя не предполагают серьезного технического обслуживания, смазки и т. п.

Модель, созданная Северским, представляла собой прямоугольную рамку из бальсы (дерева, древесина которого считается самой легкой в мире) с натянутой на нее алюминиевой проволокой. Электрическая энергия подводилась к аппарату по коаксиальному кабелю. Но сделать что-то большее у него не получилось. Попытка Северского построить ионокрафт, способный подняться в воздух с человеком на борту, не удалась. Формально по причине отсутствия денег. Но все-таки основная сложность создания такого аппарата кроется в другом. Даже сейчас модели ионолетов не способны нести на себе собственный источник питания. Все модели подключаются к внешнему источнику питания, так как собственный им поднять еще не под силу, не говоря уже о пилоте или дополнительном оборудовании.

Ионолеты: в небо на ионном ветре Авиация, Ионный двигатель, Двигатель, Левитация, Электричество, Лифтер, Длиннопост

Летающая модель ионолета и проект одноместного аппарата А. Н. Северского / © Popular Mechanics

Не все так просто

В чем же проблема? Атмосферному ионному двигателю требуется ток очень высокого напряжения. В то же время к идее ионолета не так давно вернулись снова. И не кто-то, а исследователи из Массачусетского технологического института (MIT), который, как известно, является новатором в области перспективных технологий. Согласно их выводам, для подъема в воздух беспилотного аппарата с оборудованием на борту и собственным источником питания потребуется несколько сотен или даже тысяч киловольт. Для сравнения, в бытовой эклектической сети напряжение тока составляет 220 вольт. Это всего 0,22 киловольта. Легкой экспериментальной модели ионолета, сделанной в лаборатории MIT, потребовалось напряжение всего в несколько киловольт. В качестве отрицательно заряженного электрода выступил тонкий медный провод, а положительного – легкая алюминиевая трубка. Каркас был склеен из бальсы.

Но в целом результаты опыта оказались обнадеживающими. Они показали, что двигатели, основанные на эффекте Бифельда – Брауна, могут быть гораздо более эффективными, чем традиционные. Эксперименты показали, что тяга такого атмосферного ионного двигателя может составлять до 110 ньютонов на киловатт мощности, тогда как традиционные реактивные двигатели имеют показатель всего 2 ньютона на киловатт.

Ионолеты: в небо на ионном ветре Авиация, Ионный двигатель, Двигатель, Левитация, Электричество, Лифтер, Длиннопост

Впечатляющие перспективы

Если верить обещаниям исследователей, передвигаться такой аппарат сможет бесшумно и не будет иметь вредных выбросов. Кроме того, он сможет вертикально взлетать, садиться, а также зависать над поверхностью. В этом он подобен вертолету. Но, в отличие от последнего, отсутствие вибрации позволит создать идеальный комфорт в пассажирской кабине. Взлетать и садиться такие аппараты смогут в непосредственной близости от жилых и административных зданий, не создавая шума, а следовательно, и неудобства окружающим. В прошлом такие летательные аппараты представлялись пилотируемыми, но сейчас с развитием беспилотной техники можно сказать, что первые ионолеты будут обходиться без человека на борту.

Незаменим он окажется и на военной службе. Ионолет невидим в инфракрасном диапазоне, что является настоящей находкой для военных. Такой беспилотный летательный аппарат можно будет использовать для разведывательных и иных миссий, не рискуя быть обнаруженным прибором ночного видения. Реализован ионолет может быть и в виде левитирующей платформы, получающей питание с земли по проводам. Летающий строительный кран, беспилотник для патрулирования дорожного движения, метеозонд, отслеживающий изменения погоды. Ему можно найти много способов применения.

Могут пригодиться ионолеты и для полетов в атмосфере других планет. Ведь им не надо нести на борту топливо. Но все-таки, осталось решить вопрос с мощным источником питания.

Ионолеты: в небо на ионном ветре Авиация, Ионный двигатель, Двигатель, Левитация, Электричество, Лифтер, Длиннопост

Если есть опыт работы с электричеством, сделать простейшую летающую модель ионолета можно и самому. При этом необходимо предпринять соответствующие меры предосторожности, так как придется работать с током высокого напряжения. В основе конструкции – склеенная из тонких бальсовых планок треугольная рама. Верхний электрод – тонкая медная проволока сечением 0,1 кв. мм. Нижний – широкая полоска из пищевой алюминиевой фольги, натянутая на раму. Расстояние между ними – около 30 мм. Фольга должна огибать планки и не иметь острых ребер, в противном случае может возникнуть электрический пробой.

Ионолеты: в небо на ионном ветре Авиация, Ионный двигатель, Двигатель, Левитация, Электричество, Лифтер, Длиннопост

Простейшая модель ионолета /© linux-host

После сборки конструкции к ней подключается высоковольтный источник питания с напряжением 30 кВ. Положительный вывод – к проводу, отрицательный – к фольге. Чтобы модель не улетела, ее нужно привязать к столу капроновыми нитями.

Читайте также: