Типы реле применяемые в блоке сигнализации релейной защиты

Опубликовано: 17.05.2024

Устройство релейной защиты

Термин «релейная защита» относится к очень широкому кругу устройств, применяемых в электроэнергетике.

  • выявление повреждений элементов систем электроснабжения;
  • локализация и отключение повреждённого участка или электроустановки для сохранения работоспособности остальной части системы;
  • определение отклонений от нормального режима отдельных электроустановок и частей энергосистемы, в результате которых может произойти повреждение оборудования или потеря устойчивости системы электроснабжения;
  • автоматическое выполнение действий, направленных на восстановление нормального режима (отключение части электрооборудования, включение устройств компенсации).

Таким образом, в одних случаях защитная аппаратура на основе реле способна предотвратить опасность выхода из строя установок и элементов энергосистем, в других – среагировать на факт повреждения и остановить дальнейшее развитие аварийной ситуации.

Эти действия релейной автоматики позволяют минимизировать ущерб, нанесённый в результате повреждения оборудования и ущерб от недоотпуска электрической энергии потребителям.

Необходимый уровень укомплектованности сетей и систем электроснабжения устройствами релейной защиты и автоматики (УРЗА) определён действующими нормативными документами в области энергетики.

Ни одна электроустановка не может быть введена в работу, не будучи укомплектованной защитными устройствами в минимальном объёме, определённом действующими правилами.

На каждом предприятии, имеющем на балансе электрооборудование, оснащённое защитными релейными устройствами, должен быть составлен график регулярной проверки и обслуживания релейной автоматики. Контроль выполнения плановых работ по проверке, испытаниям и обслуживанию релейной защиты осуществляется органами государственного энергетического надзора.

ОБЩИЕ ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ЗАЩИТНЫХ РЕЛЕЙНЫХ УСТРОЙСТВ

Защитные устройства на базе реле разнообразны и могут быть построены по отличающимся принципиальным схемам, реализованным на различной элементной базе.

  • измерительных органов;
  • логики; исполнительных устройств;
  • сигнализации.

Измерительный орган реле получает в непрерывном режиме информацию о состоянии контролируемого объекта, которым может быть отдельная установка, элемент или участок электрической сети. Существует несколько подходов к классификации структурных блоков релейных защит.

Измерительные релейные органы иногда называют пусковыми, но это не меняет сути. Контроль состояния объекта заключается в получении и обработке технических параметров электроснабжения – тока, напряжения, частоты, величины и направления мощности, сопротивления.

В зависимости от значения этих параметров, на выходе релейного органа измерения формируется дискретный логический сигнал («да», «нет»), который поступает в блок логики.

Логический орган, получив дискретную команду релейного блока измерения, в соответствии с заданной программой или логической схемой формирует необходимую команду исполнительному блоку или механизму.

Блок сигнализации обеспечивает работу сигнальных устройств, которые отображают факт срабатывания релейного защитного комплекта или отдельного его органа.

Для успешного выполнения своего предназначения, УРЗА должны обладать определёнными качествами. Выделяют четыре основных требования, которые предъявляются к аппаратуре РЗ. Рассмотрим их по отдельности.

Селективность.

Это свойство защитных систем заключается в выявлении повреждённого участка электрической сети и выполнении отключений в необходимом и достаточном объёме с целью его отделения. Если в результате работы защитной автоматики произошло излишнее отключение оборудования системы электроснабжения, такое срабатывание автоматики называется неселективным.

Примером такой защитной системы может служить дифференциальный токовый защитный комплект, срабатывающая только при повреждениях между точками сети, в которых контролируется разность токов.

Относительной селективностью обладают системы максимального тока, которые, как правило, реагируют на нарушения режима на участках, смежных с непосредственно защищаемой ими зоной. Обычно во избежание неселективного срабатывания, такие системы автоматики имеют искусственную выдержку времени, превосходящую время срабатывания защитных комплектов на смежных участках.

Примечание. Искусственной называют выдержку времени, создаваемую специальными органами задержки срабатывания (реле времени).

Быстродействие.

Отключение повреждённого участка или элемента сети должно быть осуществлено как можно быстрее, что обеспечивает устойчивость работы остальной части системы и минимизирует время перерыва питания потребителей.

Иногда время срабатывания системы автоматики трактуют как время между возникновением повреждения и отключением повреждённого участка, то есть, включают в него время работы выключателя.

Это не совсем верно, так как выключатель не является частью УРЗА и по его параметрам нельзя оценивать эффективность релейной защиты сетей и систем электроснабжения.

То есть, учитывать время отключения выключателя необходимо, но следует помнить, что это не характеристика РЗ. Для справки можно заметить, что время отключения выключателя значительно больше времени срабатывания собственно реле автоматики (без учёта искусственной задержки).

Чувствительность.

Данное качество характеризует способность системы автоматики к гарантированному срабатыванию во всей зоне её действия при всех видах нарушений режима, на которые данная автоматика рассчитана. Чувствительность системы автоматики является точным численным показателем, значение которого проверяется в расчётных режимах с минимальными значениями параметров её срабатывания.

Универсальная характеристика всех технических устройств, заключающаяся в способности РЗ функционировать длительно и безотказно. В соответствии со своим основным предназначением.

ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Типы УРЗА можно классифицировать по параметрам режима работы сети, на которые они реагируют.

Токовые защиты.

Наибольшее распространение получили токовые защиты, поскольку именно повышенное значение тока является критерием такого частого вида нарушения режима работы как короткое замыкание. В основе токовой релейной защиты находится реле тока.

Традиционно используемыми являются реле электромеханического типа, состоящие из токовой катушки и подвижной электромагнитной системы, замыкающей контакты. На смену этим приборам пришли полупроводниковые устройства, а с развитием цифровых технологий и микропроцессорные системы релейной защиты.

Независимо от элементной базы, логика работы защит остаётся в принципе той же. Конечно, микропроцессорные системы способны реализовать более сложный и разветвлённый алгоритм действий.

В простейшем случае, на реле выставляется требуемая уставка – значение тока, при котором реле должно сработать. Первичными преобразователями тока являются измерительные трансформаторы или датчики тока.

Защиты по напряжению.

Среди самых распространённых представителей этого класса групповая секционная защита минимального напряжения.

Логика работы этой автоматики увязана с технологическим процессом, электропривод оборудования которого питается от одной секции подстанции. Автоматика минимального напряжения имеет двухступенчатое исполнение. Типовая последовательность работы выглядит следующим образом.

Секция, к которой подключены электродвигатели приводов механизмов технологического процесса (например, это могут быть механизмы котла тепловой электростанции), имеет два питания – от рабочего и резервного трансформаторов.

При отключении рабочего трансформатора срабатывает автоматика включения резерва (АВР). Через небольшой промежуток времени к секции подключается резервный трансформатор.

За время бестоковой паузы нагруженные механизмы успевают затормозиться. После подключения резервного трансформатора начинается самозапуск электродвигателей механизмов.

Повышенный ток, обусловленный групповым запуском двигателей, вызывает посадку напряжения на секции. При снижении напряжения до уставки первой ступени автоматики, происходит отключение наименее значимых для технологического процесса механизмов.

Делается это для того, чтобы облегчить запуск более важного оборудования и удержать станционный котёл (или другой агрегат) в работе.

Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования. В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла).

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Реле называется устройство, в котором осуществляется скачкообразное изменение (переключение) выходного сигнала под воздействием управляющего (входного) сигнала, изменявшегося непрерывно в определённых пределах.

Релейные элементы (реле) находят широкое применение в системах автоматики, так как с их помощью можно управлять большими мощностями на выходе при малых по мощности входных сигналах; выполнять логические операции; создавать многофункциональные релейные устройства; осуществлять коммутацию электрических цепей; фиксировать отклонения контролируемого параметра от заданного уровня; выполнять функции запоминающего элемента и т. д. Наибольшее применение реле находят в области релейной защиты и автоматики.

Реле классифицируются по различным признакам: по виду входных физических величин, на которые они реагируют; по функциям, которые они выполняют в системах управления; по конструкции и т. д. По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.

Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного. Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину. Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент. Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом. Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству.

По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные.

Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи.

Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения па раметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока). Основные характеристики реле определяются зависимостями между параметрами выходной и входной величины.

По способу включения реле разделяются:

  • Первичные – реле, включаемые непосредственно в цепь защищаемого элемента. Достоинством первичных реле является то, что для их включения не требуется измерительных трансформаторов, не требуется источников оперативного тока и не требуется контрольных кабелей.
  • Вторичные - реле, включаемые через измерительные трансформаторы тока или напряжения.

Наибольшее распространение в технике релейной защиты получили вторичные реле, к достоинствам которых можно отнести: они изолированы от высокого напряжения, расположены в удобном для обслуживания месте, выполняются стандартными на ток 5(1) А или напряжение 100 В независимо от тока и напряжения первичной защищаемой цепи.

По исполнению реле классифицируются:

  • Электромеханические или индукционные - с подвижными элементами.
  • Статические - без подвижных элементов (электронные, микропроцессорные).

По назначению реле подразделяются:

  • Измерительные реле. Для измерительных реле характерно наличие опорных элементов в виде калиброванных пружин, источников стабильного напряжения, тока и т.п. Опорные (образцовые) элементы входят в состав реле и воспроизводят заранее установленные значения (называемые уставкой) какой-либо физической величины, с которой сравнивается контролируемая (воздействующая) величина. Измерительные реле обладают высокой чувствительностью (воспринимают даже незначительные изменения контролируемого параметра) и имеют высокий коэффициент возврата (отношение воздействующих величин возврата и срабатывания реле, например, для реле тока - Кв=Iв / Iср).
  • Реле тока реагируют на величину тока и могут быть: - первичные, встроенные в привод выключателя (РТМ); - вторичные, включенные через трансформаторы тока: электромагнитные - (РТ-40), индукционные - (РТ-80), тепловые - (ТРА), дифференциальные - (РНТ, ДЗТ), на интегральных микросхемах - (РСТ), фильтр - реле тока обратной последовательности - (РТФ).
  • Реле напряжения реагируют на величину напряжения и могут быть: - первичные - (РНМ); - вторичные, включенные через трансформаторы напряжения: электромагнитные – (РН-50), на интегральных микросхемах - (РСН), фильтр - реле напряжения обратной последовательности - (РНФ).
  • Реле сопротивления реагируют на величину отношения напряжения и тока - (КРС, ДЗ-10);
  • Реле мощности реагируют на направление протекания мощности КЗ: индукционные – (РБМ-170, РБМ-270), на интегральных микросхемах - (РМ-11, РМ-12).
  • Реле частоты реагируют на изменение частоты напряжения - на электронных элементах (РЧ-1, РСГ).
  • Цифровое реле - это многофункциональное программное устройство, одновременно выполняющее функции реле тока, напряжения, мощности и т.д.

Реле могут быть максимальные или минимальные . Реле, срабатывающие при возрастании воздействующей на него величины называются максимальными, а реле, срабатывающие при снижении этой величины, называются минимальными.

Логические или вспомогательные реле подразделяются на:

  • Реле промежуточные передают действие измерительных реле на отключение выключателя и служат для осуществления взаимной связи между элементами релейной защиты. Промежуточные реле предназначены для размножения сигналов, полученных от других реле, усиления этих сигналов и передачи команд другим аппаратам: электромагнитные постоянного тока – (РП-23, РП-24), электромагнитные переменного тока – (РП-25, РП-26), электромагнитные постоянного тока с замедлением при срабатывании или отпадании – (РП-251, РП-252), электронные на интегральных микросхемах - (РП-18),
  • Реле времени служат для замедления действия защиты: электромагнитные постоянного тока – (РВ-100), электромагнитные переменного тока – (РВ-200), электронные на интегральных микросхемах - (РВ-01, РВ-03 и ВЛ)
  • Реле сигнальные или указательные служат для регистрации действия как самих реле, так и других вторичных аппаратов (РУ-21, РУ-1).

По способу воздействия на выключатель реле разделяются:

  • Реле прямого действия , подвижная система которых механически связана с отключающим устройством коммутационного аппарата (РТМ, РТВ)
  • Реле косвенного действия , которые управляют цепью электромагнита отключения коммутационного аппарата.

Основные виды релейной защиты:

  • Токовая защита – ненаправленная или направленная (МТЗ, ТО, МТНЗ).
  • Защита минимального напряжения (ЗМН).
  • Газовая защита (ГЗ).
  • Дифференциальная защита.
  • Дистанционная защита (ДЗ).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. По факту, это автоматический выключатель, который соединяет или разъединяет электроцепи при достижении установленных значений или под внешним воздействием. Реле применяются в промышленности для автоматизации технологических процессов, в бытовой технике, которая есть в каждом доме, например в холодильниках и стиральных машинках, для защиты сети от слишком высоких или слишком низких параметров тока. Выбор нужного устройства упрощает классификация реле по различным признакам.

Содержание статьи

Общее описание конструкции

Понятие «реле» объединяет целое семейство устройств разной конструкции. Но в общем случае реле состоит из трех основных функциональных элементов:

  • Воспринимающий. Это первичный элемент, который воспринимает контролируемую величину и преобразует ее в другую физическую величину.
  • Промежуточный. Сравнивает полученное значение с заданным параметром. Если это значение выше или ниже заданного параметра, то на исполнительный элемент передается первичное воздействие.
  • Исполнительный. Этот элемент передает воздействие в цепи, управляемые реле. В результате такого воздействия может произойти: размыкание или соединение управляемой цепи, переключение параметров тока.

Исполнение и принцип действия первичного элемента зависят от того, какое назначение имеет реле и на какую физическую величину (сила тока, напряжение, свет, тепло и т.п.) оно настроено.

Основные характеристики реле

Независимо от вида и принципа действия реле, выделяют несколько параметров, на которые обращают внимание при выборе этого прибора:

  • Время срабатывания – промежуток времени между поступлением управляющего сигнала и воздействием на управляемые цепи.
  • Коммутируемая мощность – допустимая мощность электроцепи или электроустановки, которой будет управлять реле.
  • Уставка – обычно это регулируемый параметр, который определяет величину поступающего параметра (тока, напряжения, частоты, давления, температуры), при которой происходит срабатывание реле.

Виды реле: контактные и бесконтактные

По устройству исполнительного компонента реле делят на контактные и бесконтактные.

Контактные

Воздействуют на управляемую цепь с помощью электрических контактов. Их размыкание или замыкание полностью разъединяет или замыкает электроцепь. Для изготовления контактов используются: медь, серебро, вольфрам. Количество контактов – до 10 штук. Четырех- и пятиконтактные реле используются в электрических схемах автомобилей для включения и переключения цепей.

Бесконтактные

Такие реле воздействуют на управляемую цепь способом изменения электрических параметров выходных электроцепей – емкости, сопротивления, индуктивности, величины тока или напряжения.

Классификация реле по способу включения

Первичные

Эти устройства включаются непосредственно в цепь элемента, для защиты которого они предназначены. Их преимущества – не требуются измерительные трансформаторы, источники оперативного тока, контрольные кабели.

Вторичные

Подключаются в цепь с использованием вторичных трансформаторов. Это наиболее распространенный вид реле. Их преимущества – изоляция от высокого напряжения, возможность расположить устройство в месте, удобном для обслуживания. Вторичные реле выпускаются стандартными. Они рассчитаны на ток 5 (1) А и напряжение 100 В и могут устанавливаться в любые электроцепи, независимо от их тока и напряжения.

Виды реле по назначению

По назначению эти устройства бывают трех типов – управления, защиты, сигнализации.

Реле управления

Эти реле являются первичными. Монтируются непосредственно в электроцепь. Их роль – включение и выключение отдельных элементов схемы. Могут использоваться самостоятельно или в качестве комплектующих низковольтных комплектных устройств – ящиков, панелей, шкафов.

Реле защиты

Выполняют функции включения, отключения и защиты устройств, имеющих термические контакты – электродвигателей, вентиляторов. При превышении температуры термические контакты размыкаются. Оборудование может восстановить работу только после остывания термоконтактов до установленной температуры.

Сигнализации

Такие реле устанавливают в охранных системах автотранспорта, предприятий, придомовых территорий. Служат для формирования сигнала при достижении установленной величины параметра, который находится под контролем (ток, напряжение, частота, давление, температура, акустические параметры и другие).

Разновидности электромеханических реле

Наиболее распространенный вид электрических реле – электромеханические. К ним относятся: электромагнитные, индукционные, электротепловые устройства.

Электромагнитные

Один из видов электрических реле электромагнитное. В конструкции этого устройства имеются: обмотка со стальным сердечником, группа подвижных контактов, замыкающих и размыкающих управляемую электроцепь. Рассмотрим принцип их действия:

  • На катушку сердечника подается управляющий ток.
  • В сердечнике под воздействием электрического тока создается магнитное поле, притягивающее контактную группу.
  • В зависимости от типа реле, контакты замыкают или размыкают электрическую цепь.

Разновидность электромагнитных реле – поляризованные, которые отличаются от нейтральных способностью реагировать на полярность управляющего сигнала. Размыкание или замыкание контактов зависит от полярности подключения электромагнита. Обладают более высокой чувствительностью, по сравнению с нейтральными реле. Такие устройства могут использоваться только в цепях постоянного тока.

Электротепловые (термические)

Тепловые реле представляют собой комплекс биметаллических пластин, для изготовления которых используются металлы с разным коэффициентом расширения при нагреве. Такие реле могут использоваться в качестве защитных устройств: при превышении температуры, установленной регулятором, контакты разъединяются, и поступление тока на потребителя прекращается.

Обычно тепловые реле используются в бытовых одно- и трехфазных сетях при подключении электрических двигателей. При увеличении нагрузки на двигатель выше установленной величины происходит нагрев биметаллического реле, которое при достижении определенной температуры размыкает электрическую цепь. Двигатель прекращает работу. После остывания биметаллических пластин цепь замыкается и двигатель возобновляет работу. Термические устройства могут оснащаться колесиком, с помощью которого регулируется температура отключения двигателя, и кнопкой принудительного запуска.

Существует разновидность термических реле, в которых биметаллические пластины заменены легкоплавящимся сплавом. Они срабатывают практически мгновенно – при достижении определенной температуры металл расплавляется и цепь размыкается. Принцип действия таких устройств похож на принцип действия предохранителей. После срабатывания такое реле, установленное непосредственно на оборудовании в качестве последней защиты от перегорания, подлежит замене.

Индукционные

Принцип действия этих устройств основан на взаимодействии между переменными магнитными потоками и токами, которые формируют переменные магнитные потоки. Индукционные приборы рассчитаны только на использование в цепях переменного тока. Существуют три типа индукционных реле – с рамкой, диском, цилиндрическим ротором («стаканом»). Эти устройства широко востребованы в системах релейной защиты и автоматики.

Другие виды электрических реле

Твердотельные

Эти электронные устройства компактны и долговечны, благодаря отсутствию трущихся механических частей. Работу механики здесь выполняют полупроводниковые элементы – биполярные и МОП-транзисторы, тиристоры, симисторы. По сравнению с твердотельными, они имеют следующие преимущества:

  • Низкий уровень шума при работе.
  • Очень высокая наработка на отказ, которая в 100 раз и более превышает ресурс электромагнитных устройств.
  • Быстродействие, составляющее доли миллисекунд, у электромагнитных 50 мс – 1с.
  • Электропотребление ниже на 95 %.

Однако твердотельные реле имеют не только достоинства, но и недостатки. Одним из них является слабая устойчивость к импульсным перенапряжениям, которые электромагнитным реле практически не страшны. При использовании твердотельных реле необходимо предусмотреть схемотехническое решение, которое ограничивает эти импульсы. Есть и еще минусы – нагрев при работе, наличие токов утечки, приводящих к наличию напряжения на фазном проводе даже при отключенном реле.

Твердотельные реле применяют в системах регулирования температуры, в которых в качестве нагревателей используются ТЭНы, в промышленной автоматике, телеметрии, механизмах оборудования, используемого в металлургической и химической индустрии, в медоборудовании, военной электронике.

Герконовые

Реле этого типа представляют собой герконовую катушку. Это баллон, заполненный инертным газом, или внутри которого создан вакуум. Внутри баллона располагают соединительные элементы из пермаллоя – прецизионного сплава (сплава с точно заданным химическим составом), включающего железо и никель. Эти соединительные элементы имеют вид проволоки с контактами. Их покрывают серебряным или золотым напылением. Геркон размещают в середине электрического магнита или в пределах действия его поля. При подаче тока на обмотку электромагнита образуется магнитный поток, который запирает контакты. Герконовые реле могут выполнять функции: замыкающие, переключающие, размыкающие. Преимущества этих устройств – компактные габариты, доступная цена, отсутствие трущихся частей, что продлевает срок службы. Тот факт, что контактная группа располагается в инертном газе или вакууме и надежно защищена от влаги, повышает надежность реле.

При использовании герконовых реле следует избегать:

  • близкого присутствия источника ультразвука, который будет негативно влиять на работоспособность;
  • воздействия постороннего магнитного поля;
  • механических повреждений.

Колба изготавливается обычно из стекла, поэтому ее нужно всячески оберегать от механических воздействий. При разбитой колбе контактная группа срабатывать не будет. Герконовые реле можно использовать только в системах, в которых параметры электропитания находятся в пределах, установленных в технической документации. При подаче слишком высоких токов произойдет размыкание контактов. Нарушения в работе герконовых реле наблюдаются и в случаях подачи тока слишком низкой частоты.

Фотоэлектронные (фотореле)

Основой фотоэлектронного реле является полупроводниковый элемент – фоторезистор, сопротивление которого изменяется в зависимости от изменения освещенности. Фотореле – прибор, широко применяемый коммунальными службами. Он надежен в работе и обеспечивает существенную экономию электроэнергии и безопасность на улицах. При повышении освещенности все осветительное оборудование отключается, а при наступлении темноты – включается. Большинство таких приборов оснащено регулятором порога срабатывания и механическим выключателем.

Виды реле по типу поступающего параметра

По этому параметру разделяют реле: тока, мощности, частоты, напряжения, давления, акустических величин, количества газа. Устройства могут быть максимальными и минимальными. Реле, которые срабатывают при превышении заданной величины, называют «максимальными», а при ее падении ниже заданного уровня – «минимальными».

Реле тока

Реле тока реагируют на резкие перепады тока и при необходимости отключают отдельную нагрузку или всю систему электроснабжения. Величина максимального тока, при которой необходимо отключить потребителей, устанавливается регулятором.

Реле напряжения

Реле напряжения реагируют на величину напряжения и включаются через трансформаторы напряжения. Используются для контроля фаз напряжения в электросетях и защиты электроприборов. Основой такого реле является контроллер быстрого реагирования, отслеживающий отклонения напряжения за установленные пределы. Общепринятый стандарт срабатывания таких реле – ниже 170 В и выше 250 В.

Реле частоты

Служат для контроля частоты переменного тока, которая должна быть равна 50 или 60 Гц в одно- и трехфазных сетях. Обычно имеют фиксированные задержки срабатывания. Пороги размыкания цепи, которая находится под контролем, можно регулировать. Режим работы этого устройства может предусматривать наличие «памяти» аварии.

Реле мощности

Устройство, ограничивающее мощность, действует аналогично ограничителю тока нагрузки. При превышении установленного порога мощности происходит отключение потребителя. Реле ограничения мощности часто оснащаются функцией автоматического повторного включения. То есть, после снижения нагрузки работа оборудования возобновляется автоматически.

Реле давления

Реле давления – важнейший прибор, используемый в насосном оборудовании для контроля перепадов давления воды, масла, нефти, воздуха. Различают два основных типа таких приборов – электромеханические и электронные.

Электромеханические реле имеют в конструкции особый элемент, реагирующий на изменение давления в системе, – гибкую мембрану, которая изгибается под напором жидкости (воздуха) в системе. Она соединяется с двумя пружинами, одна из которых настраивается на минимально допустимый напор, а вторая – на разницу между верхней и нижней границами давления в системе. При снижении давления в системе ниже минимального порога реле включает насосное оборудование, при превышении верхнего порога – отключает. Это простые и надежные устройства, но не очень удобные в эксплуатации. Оператору приходится регулярно проверять настройки и при необходимости их корректировать.

Электронные устройства имеют более сложную конструкцию. Пределы можно устанавливать очень точно и при эксплуатации контролировать их не требуется. Электронные приборы чувствительны к гидроударам, поэтому их оснащают небольшими гидробаками (объем – примерно 400 мл). Электронное реле давления устанавливается между насосным оборудованием и первой точкой водоразбора.

Реле акустические

Акустические реле реагируют на изменение акустических величин – частоты звуковой волны, ее давления или акустических характеристик материалов – коэффициентов поглощения и отражения. Принцип действия может быть механическим или электрическим. В акустических приборах механического действия предусмотрена мембрана, которая прогибается под давлением звуковых волн, и при достижении определенной величины давления происходит замыкание контакта. В состав электрических акустических приборов входят: воспринимающий орган (микрофон, фильтр), усилитель, выходное электрическое реле.

Устройства, срабатывающие на любой шум, часто используются совместно с системой освещения. Они реагируют на любой возникающий шум в помещении и дают сигнал на включение света. Обычно их устанавливают в коридорах и на лестничных площадках. Также акустические реле широко используются в охранных системах, «интеллектуальных» игрушках.

Газовые реле

Эти приборы применяются для обеспечения газовой защиты. Они представляют собой металлический корпус, врезанный в маслопровод. Реле в нормальном состоянии заполнено маслом, а его контакты находятся в разомкнутом состоянии. При повышении содержания газов они заполняют верхнюю часть реле с одновременным вытеснением масла. Поплавок, имеющийся в конструкции, с понижением уровня масла опускается, поворачивается вокруг своей оси и вызывает замыкание контактов в сигнальной цепи. Сформированный сигнал предупреждает о высокой загазованности среды.

Промежуточные реле

Часто функции промежуточных выполняют электромагнитные реле, в которых в зависимости от конструкции и области применения имеются контакты следующих типов:

  • Нормально разомкнутые (замыкающие). При отсутствии электропитания находятся в разомкнутом состоянии. При подаче напряжения происходит их замыкание.
  • Нормально замкнутые (размыкающие). В нормальном состоянии такие контакты находятся в замкнутом состоянии, а при поступлении электропитания контакты размыкаются.
  • Перекидные. В таких реле при отсутствии напряжения имеется средний контакт, замкнутый с одним из неподвижных контактов. При подаче тока средний контакт разрывает связь с первым неподвижным контактом и замыкается со вторым неподвижным контактом.

Обозначение реле на схеме

Обозначение реле на принципиальной схеме

Обозначение реле на принципиальной схеме

На электрических схемах реле обозначается прямоугольником, от наибольших сторон которого показаны выводы питания. Функциональное назначение реле указывается на схеме буквами:

Для предотвращения аварийных ситуаций в электрических сетях 6кВ и выше, а также для локализации производственных нештатных ситуаций в электроснабжении потребителей электроэнергии, широко применяются приборы релейной защиты и автоматики. Расчет установок РЗ и А производится специализированными организациями после анализа схемы и режимов работы электроустановок, так как от правильного выбора зависит надежность работы всей электросети.

Что из себя представляет релейная защита

Релейная защита – это устройство, или комплекс устройств, которые отсекают поврежденный участок от цепи в случае возникновения нештатных ситуаций. Это необходимо для того, чтобы обезопасить дорогостоящее оборудование и свести к минимуму последствия аварий. Реле задаются уставки – величины параметров срабатывания, при достижении которых оно производит отключение коммутирующих устройств. Для большей защищенности один участок цепи оснащают несколькими типами защит, чтобы добиться максимальной сохранности и целостности электросети и оборудования.

Устройства РЗ контролируют все необходимые параметры в работе сетей высокого напряжения:

  • Силу тока.
  • Напряжение.
  • Температуру.
  • Время.
  • Мощность.

Требования к релейной защите

Основными требованиями к релейной защите являются:

  1. Чувствительность.
  2. Селективность (избирательность).
  3. Надежность.
  4. Быстродействие.

Чувствительность

Защита должна иметь чувствительность к возникновению повреждений или утери нормального режима работы сети и начать отсечку в самом начале появления нештатной ситуации, чтобы действие защиты успело предотвратить увеличение масштабов аварии и предохранить оборудование от повреждений КЗ.

Селективность

Селективность определяет возможность поэтапного отключения поврежденного участка сети не затрагивая работы остальных потребителей (присоединений).

Например, при возникновении КЗ возле электродвигателя D1 должна сработать защита Р1. В таком случае двигатели D2 и D3 продолжат работу. Если же сработает защита Р4, то в работе останется только 1 двигатель – D3.

Надежность

Надежность работы релейной защиты обусловлена двумя факторами. Во-первых, это безотказное срабатывание в случае возникновений ситуаций, для избегания которых она применяется. Она должна всегда исправно отключать оборудование при наличии повреждений. Во-вторых, это отсутствие ложных срабатываний, т.е. в нормальных условия работы РЗ не должна срабатывать.

Быстродействие

Именно быстрое отключение элементов цепи, которые имеют повреждения, сокращает размеры повреждений всей сети, а также позволяют электрооборудование на неповрежденных участках сети продолжать работу в нормальном режиме. Время срабатывания РЗ не должно превышать 0,1с. Многие современные устройства срабатывают уже через 0.02с, как только появляется неисправность.

Основные понятия релейной защиты (Р З). РЗ – называют специальные средства и устройства для защиты, выполняемые с помощью реле, процессоров, блоков и других. аппаратов, и предназначенные для отключения силовых выключателей при напряжении свыше 1000 В или автоматических выключателей при напряжении до 1000 В. Более часто термин РЕЛЕЙНАЯ ЗАЩИТА используется в установках и сетях высокого напряжения. К системам автоматики в настоящей работе отнесены устройства АПВ, АВР, АЧР, АРТ.

Р.З. – основное средство защиты линий, трансформаторов, генераторов, двигателей от аварийных и ненормальных режимов.
Требования к РЗ. К релейной защите предъявляются следующие требования:
-селективность (избирательность), т.е. способность защиты самостоятельно определять поврежденный участок сети и отключать только этот участок,
-быстродействие,
-надежность действия,
-чувствительность (т.е. способность отключать поврежденные участки на начальной стадии повреждения)
-простота схемы.
Контролируемые параметры Р.З. Устройства РЗ могут контролировать следующие параметры: ток, напряжение, мощность, температуру, время, направление и скорость изменения контролируемой величины.
Функции релейной защиты. Устройства РЗ могут выполнять следующие функции:

  • защита от К.З междуфазных,
  • защита от замыканий на землю, в т. ч. 2х-3х и однофазных
  • защита от минимального напряжения;
  • защита от внутренних повреждений в обмотках двигателей, генераторов и трансформаторов.
  • защита от асинхронного режима работы синхронных двигателей.
  • защита от обрывов в роторной цепи мощных двигателей.
  • защита от затянувшегося пуска
  • дифференциальная защита (продольная и поперечная) крупных машин и линий.

Оперативный ток. Оперативный ток предназначен для питания цепей управления, защиты, сигнализации и т.п. Оперативным током питаются приводы всех коммутационных аппаратов подстанций. Оперативный ток может быть переменным и постоянным, величина напряжения обычно составляет 110-220 В. Оперативный ток на ответственных подстанциях и установках должен быть всегда, даже при потере питания главных цепей, поэтому оперативный ток должен иметь независимые источники питания, в качестве которых могут использоваться: аккумуляторные установки, выпрямители, генераторы, специальные блоки питания.
Элементная база РЗ. В качестве основных элементов релейной защиты применяются реле, в том числе электромагнитного или других принципов действия, а также полупроводниковые и микроэлектронные приборы и блоки.

Основные реле. В схемах РЗиА применяется много типов различных реле, а в последние годы - специальных блоков и процессоров, объединяемых в локальную компьютерную сеть. В качестве основных применяются реле тока, напряжения, мощности, частоты, дифференциальные реле и блоки дифференциальной защиты.

Реле тока. Наиболее часто используются электромагнитные реле РТ -40 и индукционные типа РТ-80. Это высокочувствительные устройства, реагирующие на изменение тока, и могут защищать от перегрузок и от КЗ.

реле тока РТ-40

  • Подвижный контакт
  • сердечник
  • перемычка
  • обмотка
  • контактная часть
  • пружина
  • шкала уставок
  • регулятор уставки срабатывания

Рисунок 1 - Конструкция реле тока РТ-40.

Реле РТ-40 - электромагнитное, имеет два сердечника и две обмотки, которые можно включать параллельно или последовательно для удвоения показателей шкалы. Уставка срабатывания регулируется поворотом указателя 9 (изменением натяжения пружины). Пределы уставок у различных модификаций реле этой серии - от 0,5 до 200 А, что позволяет их использовать с различными трансформаторами тока. Выпускаются также реле тока серии ЭТ-520 и другие.
Пример характеристики реле тока: РТ-40/0,2; Iсраб. 0,05¸0,1А (последовательное соединение ), и 0,1¸0,2А (параллельное соединение), Iном. от 0,4 А до 10 А

Схема устройства реле РТ-80

Рисунок 2 – Схема устройства реле РТ-80 и характеристика срабатывания реле

реле тока РТ-80

Рисунок 3 – Общий вид реле тока РТ-80 (90).

Реле РТ-80 (РТ-90) – реле тока индукционного типа, имеет два независимых элемента- электромагнитный (мгновенного действия) и индукционный (работающий с выдержкой времени). Такая конструкция позволяет применять их в схемах с зависимой и независимой от тока характеристикой срабатывания. Ток срабатывания индукционного элемента-2-10 А, время срабатывания - 0,5-16 с. При токах от 2 до 3-5 номинальных реле работает с выдержкой времени, с зависимым от тока временем срабатывания, при токах более 5- -7 номинальных у реле срабатывает электромагнитный элемент, без выдержки времени, т.е. мгновенно.
Реле напряжения. Электромагнитные высокочувствительные реле без выдержки времени, применяются для контроля величины напряжения. Выпускается единая серия РН-50. Они бывают минимального (РН-54) и максимального напряжения (РН-51, -53, -58), для постоянного и для переменного тока. По принципу действия они аналогичны РТ-40, однако имеют значительно больше витков в обмотках. Диапазон уставок напряжения этих реле от 0,7 до 200 В или 400 В у разных серий.

Дифференциальные реле

Дифференциальные реле. Высокочувствительные быстродействующие реле. Выпускаются серии РБМ - реле мощности быстродействующее, и РНТ – реле направленного тока. Применяют для дифференциальной защиты трансформаторов, генераторов и других мощных машин. Эти реле – быстродействующие и используют быстронасыщающийся трансформатор БНТ.

Дифференциальные реле применяют для защиты трансформаторов, генераторов, линий. Типы реле: РНТ-565, РБМ-170 (270) и др.

Устройство и принцип действия реле мощности РБМ

Реле РНТ-565-реле направленного тока (рис. 5) (реле электромагнитное токовое дифференциальное). Состоит из корпуса в котором находятся: реле РТ-40, быстронасыщающийся трансформатор БНТ и резисторы Rк и Rв. Реле имеет обмотки: Р- рабочая обмотка, В –вторичная обмотка, К1, К2 – короткозамкнутые обмотки, У1, У2–уравнительные обмотки
Настройка реле производится с помощью резисторов Rв и Rк. При этом добиваются, чтобы при включении реле оно становилось нечувствительным к токам намагничивания (к помехам) и к токам небаланса, возникающим в начальный момент КЗ. Это позволяет повысить чувствительность защиты. Все обмотки имеют отдельные выводы (гнезда) для регулирования и настройки.
Дифференциальное реле мощности РБМ используется для контроля изменения направления тока в устройствах направленной токовой защиты. Принцип его действия следующий.

  • магнитопровод, 2- обмотка, включенная последовательно нагрузке, 3- обмотка , включенная параллельно( в цепи напряжения), 4- неподвижный стальной сердечник, 5- алюминиевый ротор,6- подвижные контакты

Рисунок 5 - Устройство и принцип действия реле мощности РБМ

При отклонении от нормального (расчетного) режима магнитные потоки Фт и Фн, создаваемые обмотками тока и напряжения, проходят по магнитопроводу и через сердечник 4 индуцируют в роторе 5 вихревые токи, в результате чего ротор поворачивается на определенный угол. При повороте ротора замыкаются контакты 6. Реле срабатывает только тогда, когда в обмотках 2 или 3 изменяется направление тока.
Вспомогательные реле. Используются для выполнения вспомогателных функций: задержки, размножения сигнала, усиления, сигнализации, контроля положения коммутационных аппаратов. Это – реле времени, промежуточные, сигнальные и другие. Примеры вспомогательных реле: времени РВ-, ЭВ- и др., промежуточные РП-231,232,241, -указательные РУ-21, РЭУ, РС.

Виды защиты электрических сетей и установок

Все основные реле, применяемые в схемах РЗ, включаются через трансформаторы тока или напряжения, поэтому для их питания используются схемы включения вторичных реле. Реле могут действовать на привод силового выключателя непосредственно ( прямое воздействие), или через электромагнит отключения (косвенное воздействие). Реле и блоки могут включаться в одну, в две или в три фазы. Защита может срабатывать без выдержки и выдержкой времени. Питание основных реле в основном производится на переменном токе.
В электроустановках и сетях высокого напряжения применяются следующие виды защиты: МТЗ, отсечка, дифференциальная токовая защита, защита минимального и максимального напряжения, нулевая защита, земляная защита и другие.

МТЗ - максимальная токовая защита - защита от перегрузок и коротких замыканий. Она может действовать мгновенно или с выдержкой времени. Применяется для защиты электродвигателей; трансформаторов, воздушных и кабельных ЛЭП. Использует реле РТ-40 или Т-80. Защита может выполняться на одном, на двух или на трех реле, которые соответст
венно включаются в одну, в две, или в три фазы.

Первичное и вторичное реле

Рисунок 6 – Первичное и вторичное реле, прямое воздействие на привод выключателя

Рисунок 7 - Схема включения с косвенным воздействием на привод выключателя и общий вид реле РТ-40

На следующем рисунке показаны некоторые схемы включения реле тока: схема а – первичное реле и прямое воздействие на механизм свободного расцепления (МСР) силового выключателя; схема б – вторичное реле и прямое воздействие реле тока на МСР выключателя; схема в – вторичное реле и косвенное воздействие на привод силового выключателя, постоянный оперативный ток.
Применяются также схемы с независимой от тока характеристикой срабатывания, тогда при срабатывании любого реле оперативный ток подается на обмотку реле времени, которое в свою очередь с выдержкой времени (см. рис. ) замыкает свой контакт в цепи электромагнита отключения привода выключателя и указательного реле. Выключатель отключается, сигнальное реле КН также срабатывает и выбрасывает флажок (блинкер).
Существуют и другие схемы - с промежуточными реле на переменном о постоянном оперативном токе и с зависимой характеристикой времени срабатывания.

Схемы действия реле тока

Рисунок 8 – Схемы действия реле тока
Выбор уставок токов срабатывания МТЗ.
Условия выбора:

  • Защита не должна срабатывать при прохождении максимального рабочего тока нагрузки (при пиковых нагрузках), в том числе защита не должна срабатывать при пуске мощных двигателей,
  • Защита должна гарантированно срабатывать на защищаемом участке при КЗ и иметь коэффициент чувствительности КЧ в конце участка не менее 1,5.

У ячеек КРУВ (КРУРН) имеется шкала уставок МТЗ в приводе ячейки. На шкале есть шесть делений, которые соответствуют 100%; 140%; 160%;200%; 250%; 300% номинального тока ячейки. Так, для ячейки с IНОМ=50А эти деления соответствуют токам: 50А; 70А; 80А; 100А; 125А; 150А. Если необходим ток уставки , то следует выбрать шестую ступень с Iy=150A.
. Для всех типов КРУ.
Ток срабатывания защиты в первичной цепи можно определить с учетом IНОМ.MAX тока нагрузки в номинальном режиме (например – режим пуска): КЗ = 1,1 – 1,25 - коэффициент запаса:, КС.З.= 2 - 3 - коэффициент самозапуска электродвигателей (после кратковременного отключения); КВЗВ=0,8-0,85 -коэффициент возврата реле

Ток уставки реле ( во вторичной цепи) можно определить, если разделить IУ1 на коэффициент трансформации трансформатора тока КТТ.

Если нет никаких данных для расчета токов уставки (срабатывания защиты), то можно ориентировочно принимать для первичной цепи .

Токовая отсечка.
Это МТЗ, выполненная с мгновенным действием или с выдержкой времени. Токовая отсечка (ТО) обычно защищает часть линии, поэтому применяется как дополнительная защита,что дает возможность ускорить отключение повреждений при небольших КЗ. При сочетании ТО с МТЗ получается ступенчатая по времени защита. При этом первая ступень(отсечка) действует мгновенно, а последующие – с выдержкой времени. Выполняется на базе реле тока.
Дифференциальная защита.

Основана на принципе сравнения токов в начале и в конце защищаемого участка, например трансформатора или мощного двигателя. Применяется в сочетании с другими видами защиты электроустановок:
- от внутренних повреждений

  • от сверх токов – при внешних К.З.
  • от перегрузки
  • газовой (при мощности трансформаторов S ³ 6300 кВА – на открытом воздухе, и более 400 кВА – внутри помещений).

Дифференциальная защита может быть продольной и поперечной.

Продольная дифференциальная защита.

Участок между трансформаторами тока ТА1 и ТА2 является защищаемой зоной. Если ТА1 и ТА2 имеют одинаковые характеристики, то токи во вторичных цепях ТА1 и ТА 2 будут одинаковы как при нормальном режиме, так и при коротком замыкании в точке К1 (за пределами защищаемой зоны) . Обмотки их включены встречно, поэтому разность токов I1 –I2 = 0, поэтому тока в обмотке реле КА не будет и оно не сработает. При К3 внутри защищаемой зоны в точке К2 по обмотке реле КА пройдет ток I1 –I2 ≠ 0 и реле сработает, и выдает импульс на отключение силового выключателя. Дифференциальная защита надежна, высокочувствительна, быстро действует, т.к. отключается только поврежденный участок. К недостаткам относятся следующее: не обеспечивает отключение при внешних К3; требуется устанавливать автотрансформатор АТ для уравнивания тока небаланса (т.к. у трансформаторов тока разные коэффициенты трансформации). Работает на базе реле РНТ – 565 с быстронасыщаюмся трансформаторами.
Поперечная дифференцированная защита.

Применяется для защиты параллельных линий, подключенных к линиям подстанции через общий выключатель. Здесь вторичные обмотки трансформаторов тока подключают встречно, т.е. на разность токов. Используют реле и включабт токовое реле РТ-40 или ЭТ=521 мгновенного действия). Ток, протекающий по реле равен разности токов, т.к. реле включены встречно: Iр.= I1- I2 т.е. разности токов вторичных обмоток транформаторов тока. При нормальной работе Iр=0 или очень мал (т.н. ток небаланса) и реле отстраивается так, чтобы ток был недостаточен для срабатывания. Если на одной из линий будет короткое замыкание, то в обмотке одного из трансформаторов тока ток будет больше, чем у другого и в результате разность токов будет большая и реле сработает и даст импульс на отключение силового выключателя.
Защита минимального и максимального напряжения

Предназначена для защиты электроустановок от увеличения или от уменьшения напряжения. Для этой цели используются специальные высокочувствительные реле напряжения серии РН –50. Они выпускаются для переменного и постоянного тока. Реле напряжения серии РН-50 выпускаются для контроля максимального напряжения (РН-51; РН-53; РН-58) и для контроля минимального напряжения (РН-54). Они срабатывают при повышении или снижении напряжения по отношению к заданной величине.
Таблица 4 - Характеристика реле РН-51(для постоянного тока)

Читайте также: