Данные лямбда зонда вася диагност

Опубликовано: 16.05.2024

©А. Пахомов 2007 (aka IS_ 18 , Ижевск)

На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.

Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:

а) сканером
б) мотортестером, подключив щупы и запустив самописец.

Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0 . 45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0 . 45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0 . 45 В, примерно до 0 . 1 В. Если кислорода мало, напряжение станет выше, около 0 . 8 – 0 . 9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р 0131 «Низкий уровень сигнала датчика кислорода 1 ». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна!

Как же нам выяснить, в чем кроется проблема – в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.

1 . Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да – то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.

2 . Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.

3 . Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» – а сигнал на датчике не меняется, так и висит на уровне 0 . 45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливо-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом. Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси. Обратите внимание: эквивалентно! Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае – очень хороший помощник диагноста. Как пользоваться извлекаемой с его помощью информацией, описано в этой статье.

1 . Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.

2 . Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.

3 . Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.

4 . По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.

5 . Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.

Как проверить лямбда зонд

Всем привет вылетела ошибка по лямбда зонду:
16518 - Ряд 1-зонд 1: нет активности
P0134 - 35-10 - - - Спорадическая
в связи с этим хотелось бы провети его тест, прочитал что есть тест на старение, а как его сделать незнаю?

номер подсжаите пож. этой детали

-Тормоз нажали
-Вкл тест клавишей в ВагКом-е
-Газульку в пол но без кик-даун
-Если не газуется, значит делаем все правильно, ждем
-Через сек 10 – 60 обороты сами поднимутся до необходимых, на компе появится Тест ВКЛ и начнется тест. Тест может продолжаться до 5 мин, так что держим педали и ждем результат. Не рекомендую прекращать тест принудительно, мозги и слететь могут.

04_34.Лямбда регулирование – Диагностика лямбда зонда расположенного перед катализатором
34.1.Обороты двигателя,2300-2500 об/мин
34.2. 0,8-2,0 мсек
34.3.Продолжительность цикла макс.0-3,3 c. Это значение показывает частоту опроса ЛЗ старенье, чем больше продолжительность цикла, тем зонд старше.
34.4.Результат тестирования,B1-S1 в норме. Результаты проверки ЛЗ перед катализатором на старение -Тест ВЫКЛ/Тест ВКЛ/ “B1-S1 ОК”

Изображения

koticka, Заходим в базовые установки, откр блок 34, дальше по инструкции.
У меня тест проходил мин 2.
Если само ни чего не делало, значит не правильно делал.
Проверь , температура двигателя ( по датчику) больше 80С, в 99 блоке - лямдарегулирование - ВКЛ

08_33.Лямбда регулирование – Значения регулировки для зонда перед катализатором.
33.1.Регулировочное значение ,-10% .. +10%,Значение должно изменяться около 0. Если 0 – лямбда регулирование отключено, вследствие ошибки или ручного выключения лямбда регулировки.
33.2.Напряжение зонда,0.000-5.000 В

08_41.Лямбда регулирование – Подогрев зондов
41.1.
41.2.Подогев зонда перед кат. ВКЛ/ВЫКЛ, Подогрев зонда может включаться и отключаться это зависит от условий работы двигателя.(примерно раз в 2 сек)

08_30.Лямбда регулирование
30.1. Зонд1,x11,Двигатель работает на холостом ходу. Температура катализатора не менее 350°C (Блок данных 34. Поле 2).
30.2. Зонд2,x1x,Третья позиция будет активна(1) только при повышенной температуре выхлопных газов и режиме частичная нагрузка.
30.3.Нет данных,
30.4.Нет данных,
-1- 1 – Подогрев Лямбда зонда включен
-2- 1 - Лямбда зонд готов к работе
-3- 1 – Лямбда регулирование включено

--- Добавлено чуть позже ---

koticka, Заходим в базовые установки, откр блок 34, дальше по инструкции.
У меня тест проходил мин 2.
Если само ни чего не делало, значит не правильно делал.
Проверь , температура двигателя ( по датчику) больше 80С, в 99 блоке - лямдарегулирование - ВКЛ

08_33.Лямбда регулирование – Значения регулировки для зонда перед катализатором.
33.1.Регулировочное значение ,-10% .. +10%,Значение должно изменяться около 0. Если 0 – лямбда регулирование отключено, вследствие ошибки или ручного выключения лямбда регулировки.
33.2.Напряжение зонда,0.000-5.000 В

08_41.Лямбда регулирование – Подогрев зондов
41.1.
41.2.Подогев зонда перед кат. ВКЛ/ВЫКЛ, Подогрев зонда может включаться и отключаться это зависит от условий работы двигателя.(примерно раз в 2 сек)

08_30.Лямбда регулирование
30.1. Зонд1,x11,Двигатель работает на холостом ходу. Температура катализатора не менее 350°C (Блок данных 34. Поле 2).
30.2. Зонд2,x1x,Третья позиция будет активна(1) только при повышенной температуре выхлопных газов и режиме частичная нагрузка.
30.3.Нет данных,
30.4.Нет данных,
-1- 1 – Подогрев Лямбда зонда включен
-2- 1 - Лямбда зонд готов к работе
-3- 1 – Лямбда регулирование включено

Прошлый раз написал о том, как проверить кислородный датчик (лямбда-зонд). В этом раз поговорим о том как снять осциллограмму датчика. О проверке второго кислородного датчика после катализатора, как тестировать проводку и проверке датчиков со стороны блока управления двигателем.

Раньше многие датчики и исполнительные элементы делались с использованием обмоток внутри датчика. И их можно было проверить, прозвонив и/или измерив сопротивление датчика, сравнивая полученные данные с заводскими характеристиками. Многие современные датчики используют эффект Холла и их нельзя прозвонить. Для того, чтобы сделать вывод о работоспособности датчика с него снимают осциллограмму и сравнивают ее диаграмму с табличными значениями. Осциллограмма кислородного датчика позволяет понять насколько быстро реагирует датчик на различные изменения параметров топливно-воздушной смеси. Новому датчику для этого необходимо несколько миллисекунд, в то же время как умирающий датчик может реагировать, подвисая.

Можно проверить работоспособность датчика мультиметром. К сожалению, мультиметр не в состоянии показать нам скорость реакции датчика, осциллограф работает, измеряя показания в миллисекундах.

Для снятия осциллограммы с кислородного датчика (лямба-зонд) 1 (до катализатора), мы подключаем плюсовой щуп к выходу из разъема 4 и минусовой щуп к выходу из разъема 3. Для снятия использовал двухканальный осциллограф DISCO 2.0.

Для удобства подсоединения сделал специальные щупы, которые позволяют подключаться к разъему не разрывая штатную проводку. С одной стороны обычная швейная игла с припаянным к ней проводом, с другой припаян винт, что можно было легко подсоединиться к штатному шнуру осциллографа. Ну, и естественно, чтобы избежать короткого замыкания, все соединения запаяны в термоусадку. Работая с электрикой нужно соблюдать банальные меры безопасности. Мне знакомы случаи, когда в результате короткого замыкания вспыхивали автомобили или сгорали дорогие блоки управления, при этом ответственный за это предохранитель, легко переживал шок.

Подключаемся и видим, что датчик работает в норме, корректируя топливовоздушную смесь от 0,1V до 0,9V. Очень быстро реагируя на педаль акселератора.

При резком нажатии на педаль акселератора (газа) мы видим, как кислородный датчик, резко реагирует на изменения.

Посмотреть график осциллограммы можно и используя диагностическое оборудование. Например, Вася Диагност, VCDS или ELM327.

Как посмотреть график работы кислородного датчика (лямбда-зонд) в программе Вася Диагност?

Открываете программу. ----> Нажимаете на кнопку "Список блоков управления". ----> Заходите блок управления двигателем "01 — Электроника двигателя". ----> Нажимаете на кнопку "Измеряемые величины". ----> Вводите в окне "Группа" — значение "033" и у вас появляются значения работающего кислородного датчика (лямбда-зонда). ----> Дальше нажимаете на кнопку "Графики" и вам выводится вот такое окно. Где желтая кривая — график работы кислородного датчика.

Такие же графики может нарисовать Carista, Torque и другие т.п. программы, работающие с прибором ELM327. В настройках программы вы сможете это найти в меню "Запись и выгрузка журналов".

В любом случае, по мне лучше подключение осциллографа, т.к. он более оперативно реагирует на изменения и вы их видите в режиме реального времени. Но в любом случае эти программы могут продемонстрировать насколько работоспособен ваш датчик.

ВТОРОЙ КИСЛОРОДНЫЙ ДАТЧИК (диагностика и проверки).

На всех автомобилях, начиная с ЕВРО3, кислородные датчики устанавливаются также после катализатора.

Второй кислородный датчик (Лямбда 2) на двигателе CGGB имеет следующий артикул — 036906262D аналоги Denso DOX-1560, NGK 0435. Высокотемпературная смазка для установки датчика G052112A3.

Настройки для диаграмм осциллограмм для первого датчика 2V — 50 мс, для второго 5V — 50 мс.

Универсальные датчики (артикулы совпадают с датчиком 1) BOSCH 0 258 986 602, DENSO DOX-0119, NGK 1952. Исходя из того, что согласно мануалу сопротивление второго датчика составляет — 6 Ом, а у первого — 7 Ом, то полагаю, что их лучше не использовать. Так как из-за разного сопротивления датчиков двигатель может неправильно трактовать получаемые с него данные. Поэтому лучше приобретать датчик под автомобиль или по крайней мере подбирать их по сопротивлению.

Разъем второго кислородного датчика 1J0 973 824, и пины к нему 000 979 021E.
Ответная часть разъема 1J0 973 724, и пины к нему 000 979 133A.

Проверки точно такие же, как и на первой лямбде.

■ Подсоединямся к 3 и 4 проводу датчика (цвета проводов серый/белый и серый/красный). Напряжение на прогретом автомобиле на холостом ходу, должно составлять — 0,6V.

■ Подключаемся к 1 проводу (цвет белый) и массе автомобиля. Напряжение при включенном зажигании, должно соответствовать бортовому напряжению сети. Также как и первый кислородный датчик, второй получает напряжение от 30 клеммы (постоянный плюс) через реле топливного насоса. Если напряжения нет, проверьте предохранитель. Если предохранитель исправен, то проверять проводку, реле топливного насоса.

■ Делаем прозвонку между 1 и 2 проводами датчика (белый и белый/желтый). Сопротивление нагревателя — 6 Ом.

■ Проверяем массу кислородного датчика. Соединяем разъем, заводим автомобиль, подключаемся к третьему проводу (серый) и массе автомобиля. Напряжение должно быть на уровне 0V — 0,2V.

■ Для снятия осциллограммы также как и с первым датчиком подсоединяем щупы + к 4 выходу датчика, — к третьему щупу. Настройки для диаграмм осциллограммы выставляем 5V — 50 мс.

Что в случае с первым датчиком, что со вторым, если мы не получаем от датчика необходимые сигналы, то нужно проверить сигналы с блока управления двигателем и прозвонить проводку от датчика до разъема блока управления двигателем.

При замене второго кислородного датчика на автосервисе, номер рабочей позиции 24 73 19 00 количество нормочасов составляет 0,5. Таким образом стоимость замены этого датчика в Москве — 800₽, в регионах 450₽-650₽.

Как и случае с первым датчиком могут быть проблемы с закисанием и у второго, чтобы не попасть на деньги рекомендую периодически его выкручивать и смазывать резьбовую часть высокотемпературной смазкой. Также и при его установке необходимо использовать высокотемпературную смазку. Момент затяжки датчика — 50 Нм.

Указание из ELSA: "смазку „G 052 112 A3“ наносить только на резьбу; смазка „G 052 112 A3“ не должна попасть в пазы корпуса лямбда-зонда".
__________________________________________________________

ДИАГНОСТИКА НА ВЫВОДАХ БЛОКА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ И ПРОВЕРКА ПРОВОДКИ.

Блок управления двигателем 03C906014FC пины разъема блока управления двигателем 000 979 131 (A)

Блок управления двигателем вещь очень надежная и редко выходит из строя. Чаще можно столкнуться с проблемами в проводке.

С одной стороны в разъем может попасть влага и отрицательно воздействовать на пины (соединяющие контакты), с другой стороны могут перетираться провода, замыкать на массу и/или отгнивать. Как мы с вами помним из закона Ома, достаточно немного увеличить сопротивление и уже блок управления может получать недостоверные данные, учитывая что с кислородного датчика напряжение исчисляется десятыми Вольта.

Внимательно осматривайте разъемы датчиков, блоков, обращайте внимание на состояние их пинов (контактов).

Проверка проводов осуществляется мультиметром при условии, что проводка обесточена. Проверяем провода от разъема датчика до разъема блока управления двигателем. Сопротивление в проводах не должно превышать — 1 Ома. Если мультиметр показывает значение "OL", это значит что провод имеет обрыв и необходимо идти по проводке, чтобы найти место обрыва.

Перед проверкой проводки, тут уж кому как больше нравится, можно сделать проверку на выводах блока управления.

Соответствие проводов блока управления двигателем и датчиков.

От первого датчика в блок управления двигателем уходит три провода. 2 провод разъема (бело-желтый) приходит на 1 контакт разъем блока управления двигателем. 3 провод (серый) на 20 контакт. 4 провод (серо-белый) на 46 контакт.

От второго датчика также к блоку управления идут при провода. 2 провод разъема (бело-желтый) приходит на 13 контакт разъем блока управления двигателем. 3 провод (серый-красный) на 21 контакт. 4 провод (серо-коричневый) на 47 контакт.

При отсутствии напряжения на первом контакте обоих датчиков нужно проверить провод идущий к реле топливного насоса (который включается при включении зажигания). Естественно перед всеми этим проверками сразу же проверьте целостность предохранителя SB31.

Если на первом проводе отсутствует напряжение бортовой сети, нам нужно убедиться что на предохранитель SB31 (10A — красный) приходит питание. Если питания на нем нет, нужно проверить предохранитель или проводку дальше от предохранителя по схеме. Если напряжение бортовой сети на нем присутствует, то необходимо прозвонить мультиметром провод от предохранителя до контакта 1 кислородного датчика. Как уже говорилось, сопротивление не должно быть больше чем 1 Ом. При большем сопротивлении нужно проверить и починить проводку.

Если при проверке массы (3 контакт датчика), масса отсутствует, то нам нужно выполнить проверку массы на блоке управления ДВС. Отсоединяем разъем, подключаем мультиметр к 20 контакту (для первого датчика) и 21 контакт для второго, второй щуп мультиметра подсоединяем к массе автомобиля, и включаем зажигание. Если все в норме, напряжение на мультиметре должно быть в пределах от 0V до 0,2V.

Если все в норме, то проверяем проводку от контакта 20 блока управления двигателем до 3 контакта кислородного датчика, сопротивление не должно превышать — 1 Ома.

Если же масса у нас отсутствует, то возможно, что поврежден блок управления двигателем. Но, опять-таки не торопитесь делать выводы, нужно проверить заземления блока управления двигателем.

Также масса должна у нас присутствовать на 1-ом (для первого датчика) контакте, и на 13 для (второго). Эта масса подключается, когда мы заводим автомобиль. Проверяется на холостом ходу. При отсутствии массы смотрим предыдущий пункт.

При подключении мультиметра к 46-ому контакту для датчика 1 и 47-му контакту для датчика 2 и массе другим щупом, мы должны увидеть изменения напряжение для первого датчика — 0,1—0,9V и напряжение в районе 0,6V для второго. Проверка делается на холостом ходу. При отсутствии показаний, проверяем проводку, питание датчика, сам датчик.

На этом все. Удачи на дорогах и до скорых встреч.

________________________________________________________________________
Новая серия статей Как выбрать автосервис?

Диагностика двигателя по показаниям кислородных датчиков

Прежде чем поговорить об устройстве, работе и диагностике лямбда- зонда, обратимся к некоторым особенностям работы топливной системы. Нам поможет в этом эксперт журнала, Федор Александрович Рязанов, диагност с большим стажем работы, руководитель курсов обучения диагностов в компании «ИнжКар».

Современный автомобилист хочет владеть мощным, но в тоже время экономичным автомобилем. У экологов другое требование – минимальное содержание вредных веществ в выхлопе машины. И в данных вопросах интересы автомобилистов и экологов в итоге совпадают. И вот почему.


Известно, что когда двигатель не сжигает все топливо, расход горючего возрастает, растут затраты и на эксплуатацию автомобиля. Мощность двигателя (или ДВС) в условиях неполного сгорания топлива неизбежно падает, а крутящий момент снижается. Одновременно с этим увеличивается уровень вредных веществ в выхлопе автомобиля.

В этой связи одной из основных задач современного автомобилестроения является максимально полное сжигание топливной смеси в двигателе.


На сжигание смеси прямым образом влияет ее состав. Идеальной ситуацией является стехиометрический состав топлива. Говоря более простым языком, должна быть соблюдена пропорция – на 14,7 кг воздуха должен приходиться 1 кг топлива. Именно такое соотношение позволяет оптимально использовать и то, и другое. Владелец автомобиля получает больший крутящий момент и, как следствие, - адекватное ускорение автомобиля, равномерную работу двигателя во всех режимах работы. Также падает расход топлива, и автомобиль перестает загрязнять окружающую среду.

Отклонения от правильного состава топливной смеси – богатая и бедная смесь. Богатая топливная смесь образуется, когда в цилиндрах мало кислорода, но много топлива, которое, конечно же, из-за недостатка кислорода, полностью сгореть не сможет. Следовательно, автомобиль, работающий на богатой смеси, будет больше расходовать топливо, а избыток несгоревшего топлива, в этом случае, охладит камеру сгорания, мощность двигателя при этом будет падать, несгоревшое топливо попадет в атмосферу, загрязняя ее.

Другая ситуация: двигатель получает обедненную топливную смесь. В этом случае топливо в цилиндрах будет сгорать не полностью из-за недостатка топлива. Об экономичности, ради которой и разрабатывались такие двигатели, в этом случае также придется забыть. Ведь бедная смесь плохо горит, и это автоматически приводит к падению крутящего момента. Водителю приходится больше нажимать на газ, что в свою очередь, ведет к перерасходу топлива.

Таким образом, понятно, что со всех аспектов только стехиометрия топливной смеси (пропорция 14,7/1) является самым оптимальным режимом работы двигателя. И, конечно же, автомобиль, который только-только сошел с конвейера, обычно, укладывается во все рамки этого критерия. Но и «заводская» настройка может отличаться от идеала. Более того, в процессе эксплуатации автомобиля неизбежно наступает износ некоторых компонентов, датчики, отвечающие за настройку топливной системы, могут терять точность настроек. В итоге состав топливной смеси все больше уходит от идеальных показателей.

В этом случае как раз и необходим лямбда- зонд, он фиксирует количество кислорода в выхлопе автомобиля. И если в выхлопе окажется большое количество кислорода, это «сигнализирует» о бедной топливной смеси и, наоборот, если в выхлопе нет кислорода, это указывает на то, что смесь стала богатой. А мы уже выяснили, что и в том, и в другом случае уменьшается мощность двигателя, растет расход топлива, снижается экологичность выхлопа. Задача лямбда-зонда как раз и заключается в том, чтобы скорректировать эти отклонения.

Возьмем в качестве примера такую ситуацию: в топливной системе засорились форсунки, их производительность снизилась, смесь стала обедненной. Лямба-зонд фиксирует этот факт, а блок управления топливной системой реагирует на эту информацию и «доливает» немного топлива в цилиндры. Так происходит корректировка возникающих отклонений с учетом показаний этого датчика.

Таким образом, основное назначение лямбда- зонда заключается в том, чтобы компенсировать неизбежно возникающие в процессе эксплуатации автомобиля отклонения в составе топливной смеси.

Однако нужно понимать, что лямбда-зонд как таковой не является панацеей от всех бед, он лишь позволяет вернуть состав топливной смеси в состояние стехиометрии. Но это не устранение дефектов, а только их компенсация.

Вернемся к нашим форсункам. При загрязненных форсунках нарушается эффективность распыления бензина, топливо распыляется крупными каплями, испаряются они с трудом. И система топливоподачи рассчитывает тот объем топлива, который необходим для достижения состояния стехиометрии, для этого фиксируются показания датчика расхода воздуха. Однако если бензин в системе выпрыскивается крупными каплями, его пары полностью не смешиваются с воздухом, часть паров сгорает, а часть капель бензина попросту вылетает в выхлопную трубу. Лямбда-зонд трактует такую ситуацию как бедную смесь, а датчик топливной системы, который «не видит» отдельные капли бензина, добавляет топлива, чтобы привести смесь в состояние стехиометрии. Но в этом случае, резко повышается расход топлива.

Поэтому для работы лямбда-зонда важен не фактор того, как система справляется с выводом смеси на стехиометрию, а фактор того, какой «ценой» ей удается это сделать.

Рассмотрим осциллограмму работы лямбда- зонда. Датчик сам по себе не может отличить состояние стехиометрии от состояния богатой топливной смеси, так как и в том, и в другом случае кислорода в выхлопе нет. При отсутствии кислорода в топливе блок управления (ЭБУ – электронный блок управления) немного уменьшает количество подаваемого в цилиндр топлива. Как следствие, в выхлопе появляется кислород.

И в этом случае показания лямбда-зонда находятся ниже отметки 0,4 В, что для датчика является признаком того, что топливная смесь обеднела (LEARN). При низких показателях лямбда-зонда (ниже 0,4 В), блок управления увеличивает подачу топлива на несколько процентов, смесь становится богатой и показания датчика достигают уровня выше 0,6В. ЭБУ воспринимает это как признак того, что в топливной системе находится богатая смесь (RICH). Подача топлива уменьшается, показания лябда-зонда падают, цикл повторяется - состав смеси начинает колебаться. В такт изменению состава смеси меняются показания лямбда-зонда. Такие колебания ЭБУ понимает как нормальное явление, указывающее на то, что состав топливной смеси находится в зоне стехиометрии.

Вспомним также, что в катализаторе автомобиля обязательно есть цирконий, этот металл способен накапливать кислород. И в фазе бедной смеси кислород запасается в катализаторе, а в фазе богатой смеси он расходуется. В результате на выходе топливной смеси катализатор дожигает все ее остатки.

На холостом ходу такие колебания возникают с частотой одно колебание примерно в одну секунду. Время такого переключения – еще один важный показатель для лямба-зонда. В нашем случае (см. осциллограмму, Рис. 1) время переключения составило 88 мс, при этом нормой является – 120 мс.


Если переключение длится долго, как в случае нашей осциллограммы (см. осциллограмму, Рис. 2) – 350 мс, да к тому же такая ситуация повторяется многократно, блок управления выдаст ошибку: «замедленная реакция лямбда-зонда».


Величины, при которых появляется эта ошибка, определяются, главным образом, настройками программного обеспечения блока управления.

Таким образом, для диагностики по лямбда-зонду необходимо изучить фазы переключения датчика. И если на осциллограмме появится хотя бы одно переключение с низкого показания на высокое (максимальное – 1В, минимальное – 0В), это значит, что лямбда-зонд работает исправно. Исправный датчик делает примерно одно переключение в секунду. Напомним, что в алгоритме работы блока управления о бедной смеси «сигналят» показания лямбда-зонда ниже 0,4В, а о богатой – выше 0,6 В. Поэтому оценить состояние топливной системы автомобиля можно и по работе датчика. В нашем случае (см. осциллограмму, Рис. 3) блоку управления удалось скомпенсировать все дефекты и вывести стехиометрию.


Вернемся к примеру с загрязненными форсунками. При обедненной смеси показания лямбда-зонда падают ниже 0,4В. Блок управления добавляет топлива до того момента, когда смесь станет богатой. Отметим, что в этом случае блок управления «самостоятельно» отклонился от установленных заводом-изготовителем в его карте параметров. Величину отклонения он записывает в своей памяти как топливную коррекцию (fuel trime). Предельно допустимые показатели топливной коррекции для большинства современных автомобилей составляют ±20-25%. Коррекция в «плюс» означает, что блоку пришлось добавлять топлива, коррекция в «минус» - наоборот, убавлять.

То есть важно помнить, что показатель топливной коррекции и работа лямбда-зонда – это комплексный параметр, он указывает на наличие дефекта, но не указывает конкретную причину, которую придется найти и устранить на автосервисе.

И немного об особенностях строения лямбда-зонда. Такой датчик имеет циркониевую колбочку, которая одной стороной помещена в выхлопные газы. Цирконий уникальный материал, так как сквозь него может проходить кислород. Ион кислорода, «прилипая» к атомам циркония, движется по ним, при этом на циркониевом колпачке возникает напряжение. И если все идет в штатном порядке, то диффузия ионов кислорода осуществляется равномерно, и напряжение на обкладках колбочки составляет 1В. Если в выхлопе появляется кислород, диффузия невозможна, и напряжение в этом случае равно 0В. Вместо циркония в лямбда-зондах может использоваться окись титана. Отличие циркониевого лямбда-зонда от титанового заключается в том, что первый вырабатывает напряжение, а другой – меняет свое сопротивление (в переделах от 0 до 5В), и ему нужна схема, которая переводит меняющееся сопротивление в напряжение.

Слой платины на колбочке поверх циркония позволяет снять с него напряжение, играет роль катализатора, дожигает бензин и несгоревший кислород. Все ухудшается при использовании некачественного топлива, а также топливных присадок, которые в прямом смысле закупоривают слой платины и циркония, и зонд выходит из строя. Однако в этом случае, если у зонда нет физических повреждений, обычная промывка вернет его в рабочее состояние. «Современный бич» – это добавки антидетонационных присадок в топливо. До недавнего времени в качестве присадки использовался ферроцент - опасное вещество, которое мы окрестили «красная смерть» за ее красный оттенок, а также за способность быстро выводить из строя свечи, лямбда-зонды и катализатор», - отмечает Федор Александрович. Зонд может «замерзнуть» в высоком или в низком положении, то есть или в фазе богатой, или в фазе бедной смеси. И в этом случае датчик достигнет пределов топливной коррекции и прекратит попытки выравнивать состав смеси до стехиометрии.

Диагностику состояния системы топливоподачи начинаем с подключения сканера к автомобилю. Отсутствие кода «Превышение пределов топливной коррекции» еще не говорит об отсутствии дефектов в системе топливоподачи. Необходимо в потоке данных (Data Stream) убедиться в наличии колебаний лямбда-зонда (стехиометрия достигнута), а также по величине топливной коррекции оценить, какой ценой она достигнута.

Подводя итог, еще раз отметим, что при проверке лямбда-зонда необходимо обращать внимание на колебания датчика, если они есть, датчик исправен; если же система лямбда регулирования не совершает колебаний, это может указывать или на неисправность лямбда-зонда или на бедную или богатую топливную смесь. То есть сначала надо проверить сами датчики. Для этого нужно принудительно обогатить или обеднить смесь, чтобы получить колебания лямбды и убедиться в том, что он исправен.

Рассмотренные выше лямбда-зонды носят название «скачковые». Т.е. они указывают на то, есть кислород в выхлопе или нет. Но все более ужесточающиеся требования к экологии заставили производителей разработать датчики, которые способны не только работать по принципу «Да-Нет», но и определять процент кисло- рода в выхлопе. Такие датчики получили название «широкополосные датчики кислорода».

Принципы их работы и особенности диагностики автомобиля по показаниям широкополосных лямбда-зондов будут рассмотрены в следующих публикациях.

МНЕНИЕ
Максим Пастухов, технический специалист компании «ДЕНСО Рус»: «Практика показывает, что основными причинами выхода из строя лямбда зондов являются: 1. Загрязнение лямбда-зонда продуктами сгорания топлива. Фактически это присадки, которые используются для повышения октанового числа бензина, устранения детонации или для других целей. Также на это влияет степень очистки топлива. Присадки, сера и парафины «закупоривают» проводящий слой лямбда-зонда, и он «слепнет». Блок управления переводит двигатель в аварийный режим, и мы видим на приборной панели значок «Проверьте двигатель». Кстати, от вышеописанных вещей страдают также свечи зажигания, клапаны, катализатор и др. компоненты двигателя. Имеет смысл комплексно подходить к ремонту, если лямбда-зонд вышел из строя. 2. Агрессивная смесь, которой посыпают наши дороги. Она разъедает изоляцию проводов и сами провода. Мы для защиты от этого используем двойную изоляцию проводов, а также прячем место сварки проводов с датчиком внутрь лямбда-зонда».

Написать комментарий

Ваш комментарий: Внимание: HTML не поддерживается! Используйте обычный текст.

Как проверить лямбда-зонд и признаки не исправности? Подойдет ли Бош универсальный?

@andrienko.1966 --> Спасибо! Все ясно, буду проверять.

Машину дергает когда едешь на малых оборотах. На не прогретом двигателе все нормально. Свечи, провода ВВ, МАФ, ДПЗД, топливный фильтр, давление в рампе, все в норме. По ощущениям к.

Перво-наперво при выходе из строя и неисправности лямбды в поведении авто появляются несколько ощутимых последствий:

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

Визуальная проверка лямбда-зонда


Как проверить лямбда-зонд. При клике на изображение, оно откроется в полном размере

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.


Трехпроводный лямбда зонд. При нажатии на изображение, оно откроется в полном размере


Четырехпроводный лямбда зонд. При нажатии на изображение, оно откроется в полном размере


Провода лямбды. При нажатии на изображение, оно откроется в полном размере

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:


Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.


И так подведу итог чем можно проверить лямбда зонд: внешним осмотром, мультиметром, прогревом, осциллографом, бортовой системой.

Если отключить лямбда зонд и выполнять проверку без машины, можно измерить только опорное сопротивление. При подключенном элементе, можно измерить сопротивление и напряжение на прогретом двигателе.

Как проверить лямбда зонд мультиметром

Принцип проверки лямбда зонда на всех автомобилях похож. Отличия бывают только в напряжении. Детальнее разобраться поможет проверка на разных машинах.

К примеру, для проверки на Шкоде Октавия, выставляем на мультиметре сопротивление 200 Ом. Когда двигатель холодный оптимальное значение будет равно 9 Ом. Если прогреть двигатель, значение уменьшится за счет токопроводящего напыления.

После этого замеряем чувствительность датчика. Выставляем мультиметр в режим постоянного тока. Подсоединив красный щуп к лямбда зонду а черный к массе, нужно включить зажигание. Показатели будут находиться на уровне 0,45-0,47 V. После прогрева машины показатели будут прыгать от 0,1 до 0,9 V.

Проверка лямбда зонда на Тойоте Камри выполняется также. При включенном зажигании будет показывать до 0,5 V, а при постоянной работе мотора на уровне 2000 оборотов — 0,1 — 0,9 V.

Приблизительно такие же показатели будут на Форд Фокус. Только если нажать педаль газа, а потом ее резко отпустить, мультиметр покажет 1 V. На Камри и Октавии значение может быть чуть ниже — 0,8 V. Это означает, что лямбда зонд работает нормально.

Читайте также: