Назначение принцип действия и устройство регулятора давления газа возможные неисправности

Опубликовано: 24.04.2024

Управление гидравлическим режимом работы системы газораспределения осуществляется с помощью регуляторов давления*. Регулятор давления газа (далее РД) — это устройство для редуцирования (понижения) давления газа и поддержания выходного давления в заданных пределах вне зависимости от изменения входного давления и расхода газа, что достигается автоматическим изменением степени открытия регулирующего органа регулятора, вследствие чего также автоматически изменяется гидравлическое сопротивление проходящему потоку газа. РД представляет собой совокупность следующих компонентов:

Д — датчик, который осуществляет непрерывный мониторинг текущего значения регулируемой величины и подает сигнал к регулирующему устройству;

З — задатчик, который вырабатывает сигнал заданного значения регулируемой величины (требуемого выходного давления) и также передает его на регулирующее устройство;

Р — регулирующее устройство, которое осуществляет алгебраическое суммирование текущего и заданного значений регулируемой величины, и подает командный сигнал к исполнительному механизму.

ИМ — исполнительный механизм, который преобразует командный сигнал в регулирующее воздействие, и в соответствующее перемещение регулирующего органа за счет энергии рабочей среды.

* Редкое исключение составляют случаи повышения давления «после себя», которое осуществляется с помощью специальных компрессоров — газовых бустеров

На практике в РД в качестве датчика выступает контролируемое давление или т.н. «импульс», задатчиком является пружина или пневмозадатчик (пилот), а регулирующим устройством выступает мембрана или эластичный затвор. Исполнительный механизм представляет собой части корпуса регулятора с мембраной (эластичным затвором) в качестве разделителя сред и регулирующий орган. Составные элементы регуляторов с пружинным и пневматическим задатчиком показаны на рис.4.1

Рис. 4.1: Pвх - входное давление; Pвых - выходное давление; Д - датчик; З - задатчик; РУ - регулирующее устройство; ИМ - исполнительный механизм; РО - регулирующий орган; Pупр. - управляющее давление

В связи с тем, что регулятор давления газа предназначен для поддержания постоянного давления в заданной точке газовой сети, то всегда необходимо рассматривать систему автоматического регулирования в целом — «регулятор и объект регулирования (газовая сеть)».

Правильный подбор регулятора давления должен обеспечить устойчивость системы «регулятор — газовая сеть», т. е. способность ее возвращаться к первоначальному состоянию после прекращения возмущения.

В зависимости от поддерживаемого давления (расположения контролируемой точки в газопроводе ) РД разделяют на регуляторы «до себя» и «после себя». В ГРП (ГРУ) применяют только регуляторы «после себя».

Исходя из положенного в основу работы закона регулирования, регуляторы давления бывают астатические (отрабатывающие интегральный закон регулирования), статические (отрабатывающие пропорциональный закон регулирования) и изодромные (отрабатывающие пропорциональноинтегральный закон регулирования).

В статических РД величина изменения регулирующего отверстия прямо пропорциональна изменению расхода газа в сети и обратно пропорциональна изменению выходного давления. Примером статических РД являются регуляторы с пружинным задатчиком выходного давления.

РД с интегральным законом регулирования в случае изменения расхода газа создает колебательный режим, обусловленный самим процессом регулирования. При изменении расхода газа разность между первоначальным и заданным значениями выходного давления увеличивается до тех пор, пока количество газа, проходящее через регулятор, меньше нового расхода и достигает своего максимума, когда эти значения сравняются. В этот момент скорость открытия регулирующего отверстия максимальна. Но на этом регулирующий орган не останавливается, а продолжает открывать отверстие, пропуская газа больше, чем требуется, и выходное давление, соответственно, тоже повышается. В результате этого получается ряд колебаний около некоего среднего значения, при котором постоянный режим (как в случае статического регулятора) никогда не будет достигнут.

Представителями астатических регуляторов являются РД с пневматическим задатчиком выходного давления, а характерным примером такого процесса можно считать незатухающие автоколебания (т. н. «качку») некоторых типов пилотных РД в определенных переходных режимах работы.

Изодромный регулятор (с упругой обратной связью) при отклонении регулируемого давления сначала переместит регулирующий орган на величину, пропорциональную величине отклонения, но если при этом давление не придет к заданному значению, то регулирующий орган будет перемещаться до тех пор, пока давление не достигнет заданного значения. Подобный регулятор сочетает в себе точность интегрального и быстродействие пропорционального регулирования. Представителями изодромных РД являются т. н. «прямоточные» регуляторы.

Данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями статьи 437 Гражданского кодекса РФ. Для получения информации об условиях сотрудничества, пожалуйста, обращайтесь к сотрудникам ГК «Газовик».

Бесплатная телефонная линия: 8-200-2000-230

© 2007–2021 ГК «Газовик». Все права защищены.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.

Виды неисправностей и способы их устранения:

Неисправность: пружина пилота полностью ослаблена, однако выходное давление достигает или превышает на 20 процентов рабочее давление.
Причина: негерметичность регулируемого органа регулятора (пилота).
Устранение: проводится осмотр уплотняющих поверхностей седла и клапана, при необходимости у клапана заменяют резиновую прокладку.

Неисправность: выходное давление падает до нуля.
Причина: разрыв мембраны регулятора.
Устранение: мембрану необходимо заменить.

Неисправность: выходное давление непрерывно растет:
Причина: разрыв мембраны пилота, засорение седла или заедание толкателя, золотника пилота в направляющих.
Устранение: надо заменить мембрану, прочистить седло и устранить заедание толкателя.

выходное давление при настройке в пределах (0,2–0,6 кг/см?) сильно колеблется.
Устранение: следует установить дроссель на импульсной трубке от мембранной камеры регулятора к основному газопроводу, а при сохранении колебаний уменьшить чувствительность пилота, поставив более плотную (жесткую) пружину.

Неисправность: выходное давление сильно колеблется при небольших затратах газа, автономно от давления настройки.
Причина: причина может быть скрыта в довольно большой пропускной способности регулятора.
Устранение: если устранение колебаний не достигается установкой дросселя, на импульсной трубке от мембранной камеры регулятора к основному газопроводу, то снижают входное давление, а при необходимости заменяют седло и клапан регулятора на меньшие размеры.

Неисправность: выходное давление постепенно уменьшается, временами резко возрастает и вновь снижается до нуля.
Причина: обмерзание золотника и седла пилота.
Устранение : устраняется обогреванием пилота тряпкой, смоченной горячей водой.

Неисправность: выходное давление постепенно уменьшается и поджатие пружины пилота его не повышает.
Причина: засорение фильтра или отверстия седла пилота, выпадение уплотняющей резинки золотника, поломка настроечной пружины пилота.
Устранение: фильтр следует прочистить и продуть, резинку и пружину заменить новыми.

Неисправность: выходное давление изменяется одновременно с изменением входного давления.
Причина: перепутаны места установки дросселя на импульсной трубке от мембранной камеры регулятора к основному газопроводу и дельфинирующего дросселя или дроссели вообще не установлены.
Устранение: необходимо проверить установлены ли дроссели и правильно ли это сделано.

Все это необходимо знать, чтобы не возникли серьезные проблемы с работой газового оборудования.

Купить регулятор давления Вы можете в ООО "ЮгПромСнаб" г. Ростов-на-Дону официальное представительство ряда заводов изготовителей газорегуляторного оборудования.

Регулятор давления газа или редукционный клапан предназначен для снижения давления в линии отводимой от основной и поддержании этого давления на постоянном уровне.

Регуляторы давления используют для поддержания давления, необходимого для работы пневматического, газового или другого оборудования.

Например, редукционные клапаны устанавливаются на баллоны с газом и позволяют настроить необходимое давление в линии отводимой к потребителю. Редукционные клапаны, установленные на баллонах часто называют редукторами давления, так как они редуцируют или снижают давление в отводимой линии (reduction - сокращение, уменьшение, снижение).

Устройство регулятора давления

Принципиальная схема регулятора давления показана на рисунке.

Конструкция регулятора давления газа

В корпусе клапана установлена пружина 1, поджатие который регулируется винтом 2. Пружина через мембрану 3 и толкатель 4 воздействует на седельный клапан 7, на который в противоположном направлении воздействует пружина 8.

Давление на выходе зависит от величины зазора между клапаном 7 и седлом 5, кроме того оно воздействующие на мембрану 3 через канал 6.

Представленный клапан имеет два канала входной и выходной, поэтому его называют двухлинейным.

Регулятор давления с фильтром

Это устройство совмещает в себе редукционный клапан и фильтр, который очищает сжатый воздух от примесей, частиц грязи, пыли. Подробнее об устройстве и принципе действия такого регулятора (РДФ) можно узнать здесь https://izpk.ru/reduktor-rdf-3-1-rdf-3-2.

Как работает регулятор давления?

В исходом состоянии газ поступает на вход клапана, протекает в зазоре между седлом и клапаном и поступает на выход. Величина зазора определяется степенью поджатия пружины, которое изменяется с помощью регулировочного винта. Получается, что давление на выходе зависит от давления на входе и величины зазора между клапаном 7 и седлом 5.

В случае, если давление на выходе вырастет, то под его воздействием мембрана переместится и сожмет пружину, которая, в свою очередь, переместит клапан 7, проходное сечение уменьшится. Потери давления на нем возрастут, что вызовет падение давление в отводимой линии до величины настройки.

Принцип работы редуктора давления газа

Если давление на выходе регулятора упадет ниже установленной величины, давление с которым газ воздействует на мембрану уменьшится, в результате снизится поджатие пружины 1. Клапан 7 переместится и увеличит проходное сечение. Потери на нем снизятся, что вызовет рост давления в отводимой линии до величины настройки.

Как регулятор поддерживает давление на постоянном уровне

Получается, что величина давления в отводимой линии поддерживается на постоянном уровне, за счет изменения величины потерь на регуляторе. Регулятор настраивается с помощью регулировочного винта, который изменяет поджатие пружины 1, управляющее воздействие на клапан через мембрану оказывает давление газа из отводимой линии.

Давление на выходе регулятора определяется как разность между давлением на входе и величиной потерь давления на клапане.

Трехлинейный регулятор давления

Регулятор имеющий помимо входного и выходного каналов еще и дополнительный - для сброса воздуха при критическом повышении давления называют трехлинейным.

Конструкция этого регулятора отличается от конструкции двухлинейного наличием отверстия в мембране, которое открывается в случае если давление превысит критическую величину. В обычных условиях регулятор работает также как и двухлиненый.

Устройство трехлинейного регулятора давления воздуха

Если давление на выходе возрастает до значения, достаточного чтобы переместить мембрану в крайнее верхнее положение и открыть канал сброса. Газ через этот канал отправляется в атмосферу. Давление в отводимой линии снижается до тех, пока усилия пружины не будет достаточно чтобы закрыть канал сброса.

Так как сброс избыточного давления осуществляется в атмосферу, трехлинейные регуляторы представленной конструкции используют для регулирования давления воздуха.

Таким образом, принцип действия регулятора давления газа, схож в принципом действия гидравлического редукционного клапана, показанном на видео.

Давление газа регулируют с помощью регуляторов давления, которые поддерживают (стабилизируют) рабочее давление на заданном уровне при переменном расходе газа.

Регуляторы давления газа являются важнейшими приборами городских газораспределительных сетей. От их работы зависит бесперебойная подача газа к объектам газопотребления.

В зависимости от назначения и места установки используются различные регуляторы давления, отличающиеся конструктивным исполнением, формой, размерами, пропускной способностью и принципом действия. По принципу действия различают регуляторы прямого и непрямого действия.

У регуляторов прямого действия изменение конечного (рабочего) давления вызывает усилие, необходимое для осуществления регулирующего действия прибора.

У регуляторов непрямого действия изменение конечного (рабочего) давления приводит в действие лишь один из механизмов (командный прибор, регулятор управления), кото¬рый включает источник энергии и осуществляет регулирующие функции.

В зависимости от типа дроссельных устройств регуляторы могут быть одно- и двухседельными, а также с твердыми и мягкими клапанами.

На рис.75 показаны различные виды клапанов дроссельных устройств регуляторов давления: а) жесткий односедельный; б)- мягкий односедельный, выполненный из кожи или газоустойчивой резины; в) полый цилиндр с окнами для прохода газа; г) жесткий двухседельный, неразрезной, с направляющими перьями; д) мягкий двухседельный со свободно насаженными на шток клапанами.

Жесткие клапаны по сравнению с мягкими, хотя и более долговечны в работе, но с течением времени или при засоре не обеспечивают плотного закрытия седла. Клапаны жесткие двухседельные, имеющие двойное сопряжение, не обеспечивают герметичности, поэтому не используются на тупиковых газопроводах.

виды клапанов дроссельных устройств регуляторов давления

РЕГУЛЯТОРЫ ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ

РЕГУЛЯТОР ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ

У регуляторов давления прямого действия регулирующее устройство приводят в движение мембраной, находящейся под воздействием регулируемого давления.

Изменение регулируемого (рабочего) давления вызывает смещение мембраны, а через передаточный механизм и изменение количества прохода газа через регулирующее устройство регуляторов давления.

Таким образом, на изменение рабочего давления регулятор давления реагирует изменением количества пропускаемого газа.

Принцип действия регулятора давления прямого действия показан на рисунке.

Газ с давлением поступает во входной патрубок регулятора, затем проходит через седло клапана 2 и уходит из регулятора через выходной патрубок 3. Регулятор должен поддерживать после себя рабочее давление постоянные в условиях переменного расхода.

При изменении расхода газа будет изменяться рабочее давление которое воздействует снизу на мембрану 4. При увеличении расхода газа давление в первый момент несколько упадет и сила, действующая на мембрану снизу, несколько уменьшится, в результате чего под действием груза 5 мембрана вместе с клапаном 6 сместится на некоторую величину вниз и увеличит проход для газа. Давление поднимется до прежней величины.

При уменьшении расхода газа давление в первый момент несколько увеличится и мембрана будет смещаться вверх, прикрывая проходное сечение для газа клапаном. Уменьшение подачи газа через регулятор вызовет снижение до первоначальной величины.

Таким образом, регулятор давления будет поддерживать рабочее давление на заданном уровне, который определяется величиной нагрузки мембраны.

Учитывая, что разнообразие конструкций регуляторов давления очень велико, будут рассмотрены только те конструкции, которые широко используются при городском газоснабжении.

Регулятор давления РДК. Нормальная работа бытовых газовых приборов в большой степени зависит от постоянства давления газа во внутри домовых газовых сетях.

При газоснабжении бытовых потребителей сжиженным газом применяют регулятор давления типа РДК, используемый при баллонных установках и рассчитанный на начальное давление до 16 кгс/см 2 .

Давление на выходе можно регулировать в пределах 100—300 мм вод. ст. Производительность регулятора при перепаде давления в 1 кгс/см 2 и удельном весе пропанбутановой смеси около 2 кг/м 3 равна 1 м з /ч. На рис. показано устройство регулятора.

Газ высокого давления поступает через входной штуцер под клапан 2 с уплотнением из масло-, бензо- и морозостойкой резины. Положение клапана по отношению к седлу, расположенному на входном штуцере, определяется положением мембраны 3, связанной с клапаном рычажно-шарнирным механизмом.

На мембрану сверху воздействует пружина 4, а снизу давление газа. Сжатие пружины регулируется винтом 5, которым осуществляют настройку регулятора на рабочее дав¬ление. В этом случае газ, проходя через клапан, будет его и поступать через выходное отверстие 6 регулятора к газовым приборам.Если выходное давление будет повышаться сверх заданного, то пружина 4 сожмется, мембрана пойдет вверх и через рычажно-шарнирный механизм 7 подаст клапан вниз и уменьшит проход газа через регулятор. В мембрану регулятора вмонтирован предохранительный клапан 8, который работает следующим образом: при закрытом клапане 2 и повышении давления под мембраной сверх установленного ('при отсутствии расхода газа и неплотном закрытии клапана) мембрана, преодолевая действие пружины 4 и пружины 9 предохранительного клапана 5, отойдет от уплотнения 10 и сбросит излишек давления газа через отверстие под верхнюю крышку 12 регулятора, которая соединяется выбросной трубкой с атмосферой.

После настройки регулятора на определенное рабочее давление регулировочный винт 5 закрывается колпачком 13 и закрепляется винтом 14, который пломбируется. Абонентам запрещается производить регулировку давления газа винтом 5.

Для создания нормальных условий работы регулятора давления, когда положение клапана находится в области регулирования, расчетная производительность его должна быть примерно на 20% больше требуемой максимальной производительности регулятора. По этой причине регулятор рекомендуется подбирать так, чтобы он был загружен при требуемой производительности не более чем на 80%, а при минимальном расходе не менее чем на 10%.

регулятор давления РДК

РЕГУЛЯТОРЫ ДАВЛЕНИЯ НЕПРЯМОГО ДЕЙСТВИЯ

Автоматический регулятор непрямого действия состоит из следующих основных частей: а) задающего устройства, при помощи которого регулятор настраивают на заданную величину давления; б) воспринимающего элемента, который осуществляет перестановку регулирующего устройства; в) измерительного устройства, измеряющего сигнал, полученный от воспринимающего устройства, и сравнивающего его с заданной величиной; г) устройства для усиления сигнала за счет включения вспомогательной энергии; д) исполнительного механизма, перемещающего регулирующий орган (клапан или дроссельную заслонку).

Из автоматических регуляторов давления непрямого действия в газоснабжении получили пневматические регуляторы. Они широко применяются на газораспределительных и газгольдерных станциях, а также на крупных городских и промышленных установках для регулирования давления газа, где не могут быть применены регуляторы давления прямого действия. По этой причине в дальнейшем будут рассмотрены только пневматические регуляторы давления непрямого действия.

Пневматические регуляторы давления. Использование регуляторов давления прямого действия для регулирования высоких давлений газа не представляется возможным из-за тех 1 больших усилий, которые развиваются на мембраннопружинных приводах дрооссельных устройств.

Чтобы сохранить прежние размеры мембран, потребовалось бы их выполнять из более прочных материалов, а это , опять сказалось бы на чувствительности регуляторов и точ¬ности регулирования контролируемого давления.

Для того чтобы не увеличивать прочности мембран и не уменьшать их размеров, применяют пневматические реле, которые уменьшают силы, действующие на рабочие мембраны при использовании регуляторов на высоких давлениях.

Пневматическое реле. Устройство пневматического реле показано на схеме (рис. 85).

Пневматическое реле включается между газопроводом контролируемого давления и рабочей мембраной регулирующего газового клапана.

Назначение реле состоит в том, чтобы снижать высокое

схема работы пневматического реле

давление и поддерживать это сниженное давление (не выше 1,1 кгс/см 2 ) над рабочей мембраной 9 регулирующего клапана 11 в зависимости от величины регулируемого давления.

На схеме положение частей регулирующего клапана следующее. Газ высокого давления Р1, пройдя газовый кран Л,. фильтр и редуктор, поступает в корпус 8 под золотник реле 7, который находится в закрытом положении.

Давление газа над рабочей мембраной 9 отсутствует, так как оно было сброшено в атмосферу через осевой канал в ниппеле 5, закрепленном на эластичной мембране 6. Под действием пружины 10 газовые клапаны подняты и находятся в открытом положе¬нии. Возможный пропуск газа через золотник 7, за счет недостаточной герметичности закрытия, будет сбрасываться в атмосферу.

При повышении регулируемого давления PS увеличится давление на мембрану реле 1 и она сместится вправо, сжимая пружину 2 и подавая шток 4 с ниппелем 5 к золотнику 7. При достижении давления Рч заданной величины ниппель 5 подойдет своим осевым отверстием к малому конусу золотника 7 и перекроет сброс газа в атмосферу.

Дальнейшее небольшое повышение давления Ру, заставит подвижную систему реле еще сместиться вправо, и тогда ниппель 5 будет открывать золотник 7 и пропускать газ на мембрану 9, которая, прогибаясь вниз, сожмет пружину 10 и несколько закроет двухседельный клапан. Контролируемое давление Рч будет снижаться до заданной величины.

В случае снижения Ps ниже заданной величины, процесс регулирования повторится в обратном порядке.

Настройка пневматического реле на определенное рабочее давление Рч осуществляется величиной сжатия пружины 2 с помощью гайки 3.

Применение пневматического реле позволяет регулировать очень высокие и очень низкие давления газа обычными регулирующими клапанами, обеспечивая при этом большую точность в стабилизации регулируемого давления на заданном уровне.

Пневматическое реле с обратной связью. Реле с обратной связью поаволяет поддерживать заданное давление в контролируемом газопроводе более постоянным и независимым при изменениях расхода газа.

На рис. 86 показано пневматическое реле с обратной связью, у которого между механизмом, воспринимающим контролируемое давление Рч, трубчатой манометрической пружиной и механизмом, регулирующим подачу газа в газопроводе, существуют прямая и обратная связи, вызывающие замедленное перемещение запорно-регулирующих деталей клапана.

В корпусе реле помещается подвижная система, состоящая из двух мембран 2 с подвешенным между ними ниппелем 3, пружины 4, золотника 5 и пружины 6. При работе реле эта подвижная система находится в равновесии под действием сил: водной стороны—давления на мембрану 2 в полости корпуса реле; с другой—действия двух пружин 4 и 6.

При горизонтальном возвратно-поступательном движении этой подвижной системы она принимает три положения, при которых: а)редуцированный и очищенный газ в фильтре 7 и редукторе 5 может поступать в над мембранное пространство привода 9 (см. стрелки), когда система находится в левом положении; б) газ из полости привода 9 может уходить на сброс в атмосферу через отверстие А (система находится в правом положении); в) газ в полости привода запирается (система находится в промежуточном положении).

Допустим, что регулируемое давление Рч по величине ста¬ло несколько меньше заданного. Снижение давления вызовет некоторое сжатие манометрической пружины 1, и она поднимет левый конец заслонки 10. Открывание сопла 11 снизит давление газа на .мембрану 2 в полости, так как поступление газа через калиброванное отверстие в насадке 12 останется прежним, а выход газа через сопло 11 в атмосферу увеличится. Под действием пружины 4 мембрана 2 будет смещаться вправо, и ниппель 3, отойдя от малого конуса золотника 5, откроет проход газу из полости привода 9 в атмосферу (через ниппель, затем между мембранами 2 в отверстие А). Под действием пружины привода 13 регулирующий клапан К откроет проход газа, и давление будет повышаться.

Повышение давления Pi вызывает закрывание сопла 11 увеличение давления в полости N и смещение подвижной системы влево. Когда ниппель сядет на малый конус золотника 5, сброс газа из полости привода 9 в атмосферу прекратится и регулирующий клапан перестанет открываться. Давление увеличится до заданной величины и может несколько ее перейти за счет инерции регулятора. В этом случае подвижная система 'будет смещаться еще влево, сместит большой конус золотника 5 и увеличит проход в седле 14, в результате чero увеличится проход газа из редуктора 8 в над мембранное пространство 9 и регулирующий клапан закроется.

Регулируемое давление Ps теперь будет падать, а процесс регулирования повторяться с определенной амплитудой колебания давления. Эти колебания могут в значительной степени усиливаться неравномерностью расхода газа в газопроводах. Для уменьшения этих колебаний в пневматическое реле вводится обратная связь, которая вызывает замедление перестановок, а в некоторых случаях даже обратные перестановки дроссельного устройства в регулирующем клапане. Обратная связь осуществляется манометрической пружиной-сильфоном 15, .которая открытым концом соединена с полостью привода 9, а глухим — связана с коромыслом 16, к которому шарнирно присоединен правый конец заслонки 10. Действие на сопло 11 обратной связи сильфона 15 противоположно действию прямой связи от трубчатой манометрической пружины.

Обратная связь способствует более плавной работе регулирующего клапана и выравниванию контролируемого давления.

Степень влияния прямой и обратной связи на процесс регулирования давления устанавливается путем изменения положения сопла 11 по горизонтали под заслонкой 10.

Настройка реле на определенное давление производится с помощью кнопки 17, связанной системой зубчатой передачи с манометрической пружиной и позволяющей изменять ее положение.

В зависимости от упругости трубчатой манометрической пружины 1 регулирующие клапаны этого типа могут работать при давлениях от 3 до 30 кгс/см 2 .

Регулятор давления газа или редукционный клапан предназначен для снижения давления в линии отводимой от основной и поддержании этого давления на постоянном уровне.

Регуляторы давления используют для поддержания давления, необходимого для работы пневматического, газового или другого оборудования.

Например, редукционные клапаны устанавливаются на баллоны с газом и позволяют настроить необходимое давление в линии отводимой к потребителю. Редукционные клапаны, установленные на баллонах часто называют редукторами давления, так как они редуцируют или снижают давление в отводимой линии (reduction - сокращение, уменьшение, снижение).

Устройство регулятора давления

Принципиальная схема регулятора давления показана на рисунке.

В корпусе клапана установлена пружина 1, поджатие который регулируется винтом 2. Пружина через мембрану 3 и толкатель 4 воздействует на седельный клапан 7, на который в противоположном направлении воздействует пружина 8.

Давление на выходе зависит от величины зазора между клапаном 7 и седлом 5, кроме того оно воздействующие на мембрану 3 через канал 6.

Представленный клапан имеет два канала входной и выходной, поэтому его называют двухлинейным.

Как работает регулятор давления?

В исходом состоянии газ поступает на вход клапана, протекает в зазоре между седлом и клапаном и поступает на выход. Величина зазора определяется степенью поджатия пружины, которое изменяется с помощью регулировочного винта. Получается, что давление на выходе зависит от давления на входе и величины зазора между клапаном 7 и седлом 5.

В случае, если давление на выходе вырастет, то под его воздействием мембрана переместится и сожмет пружину, которая, в свою очередь, переместит клапан 7, проходное сечение уменьшится. Потери давления на нем возрастут, что вызовет падение давление в отводимой линии до величины настройки.

Если давление на выходе регулятора упадет ниже установленной величины, давление с которым газ воздействует на мембрану уменьшится, в результате снизится поджатие пружины 1. Клапан 7 переместится и увеличит проходное сечение. Потери на нем снизятся, что вызовет рост давления в отводимой линии до величины настройки.

Как регулятор поддерживает давление на постоянном уровне

Получается, что величина давления в отводимой линии поддерживается на постоянном уровне, за счет изменения величины потерь на регуляторе. Регулятор настраивается с помощью регулировочного винта, который изменяет поджатие пружины 1, управляющее воздействие на клапан через мембрану оказывает давление газа из отводимой линии.

Давление на выходе регулятора определяется как разность между давлением на входе и величиной потерь давления на клапане.

Трехлинейный регулятор давления

Регулятор имеющий помимо входного и выходного каналов еще и дополнительный - для сброса воздуха при критическом повышении давления называют трехлинейным.

Конструкция этого регулятора отличается от конструкции двухлинейного наличием отверстия в мембране, которое открывается в случае если давление превысит критическую величину. В обычных условиях регулятор работает также как и двухлиненый.

Если давление на выходе возрастает до значения, достаточного чтобы переместить мембрану в крайнее верхнее положение и открыть канал сброса. Газ через этот канал отправляется в атмосферу. Давление в отводимой линии снижается до тех, пока усилия пружины не будет достаточно чтобы закрыть канал сброса.

Так как сброс избыточного давления осуществляется в атмосферу, трехлинейные регуляторы представленной конструкции используют для регулирования давления воздуха.

Таким образом, принцип действия регулятора давления газа, схож в принципом действия гидравлического редукционного клапана, показанном на видео.

Бытовые и коммерческие регуляторы давления в газопроводах

Конструкционное, функциональное и эргономическое исполнение запорной арматуры в итоге сводится к требованиям конкретной сферы применения. Акцент делается на непосредственных рабочих параметрах, среди которых выходное давление, диапазоны замеров, объемы расхода и др. Так, газовые регуляторы давления для бытовых сетей, как правило, характеризуются низкой пропускной способностью и скромным спектром возможностей для настройки. С другой стороны, в такой арматуре делается ориентировка на безопасность и удобство эксплуатации. На практике бытовые регуляторы используются в системах газоснабжения котлов, плит, горелок и прочей домашней техники.

Промышленное и коммерческое применение накладывает более высокие требования на средства контроля газовых сред. Устройства этого типа отличаются расширенными диапазонами показателей выходного и входного давлений, точностью настроек, более высокой пропускной способностью и наличием дополнительных функций. Подобные модели используются газовыми службами, контролирующими снабжение объектов социального назначения, общепита, промышленности, инженерного хозяйства и т. д. Уже отмечалось, что существуют разные регуляторы с точки зрения сложности конструкционного исполнения. Но это не значит, что в промышленном секторе, например, применяются только лишь многофункциональные комбинированные устройства. Простейшие средства управления могут быть полезными на предприятиях благодаря высокой надежности и ремонтопригодности.

Газовый редуктор с регулятором давления

Редуктор представляет собой автономное устройство, предназначенное для контроля давления газовой смеси на выходе из какой-либо емкости или трубопровода. Основная классификация в данном случае предполагает разделение регулирующих узлов по принципу действия. В частности, различаются обратные и прямые устройства. Редуктор с обратным действием работает на понижение давления по мере выхода газа. Конструкция таких устройств включает клапаны, камеры для буферного содержания смеси, регулировочный винт и фурнитурные приспособления. Прямое действие означает, что регулятор будет работать на повышение давления при выпуске газа.

Также различают модели редукторов по типу обслуживаемого газа, количеству ступеней редуцирования и месту использования. Например, существуют регуляторы давления газа для баллонов, трубопроводных сетей и рамп (горелок). В случае с баллонами тип газа определит и способ подключения устройства. Практически все модели редукторов, кроме ацетиленовых, соединяются с баллонами посредством накидных гаек. Устройства, работающие с ацетиленом, обычно фиксируются к емкости хомутами с упорным винтом. Предусматриваются и внешние отличия между редукторами – это может быть маркировка по цвету и указанием информации о рабочей смеси.

Статические и астатические регуляторы

В статических системах характер регуляции нестабилен в местах прямого механического сопряжения с рабочей средой и запорной арматурой. В целях повышения устойчивости такого регулятора вводится дополнительная обратная связь, выравнивающая значения давления. Причем надо отметить, что фактическая величина давления в данном случае будет отличаться от нормативной до момента, пока не восстановится номинальная нагрузка на чувствительный элемент.

Традиционное исполнение статического регулятора давления газа предусматривает наличие собственного стабилизирующего устройства в виде пружины – для сравнения, в других версиях используется компенсирующий груз. В процессе рабочего момента сила, которую развивает пружина, должна соответствовать степени ее же деформации. Наибольшая степень сжатия обретается в ситуациях, когда мембрана полностью закрывает регулирующий канал.

Астатические регуляторы при любых нагрузках самостоятельно приводят показатель давления к нужной величине. Также восстанавливается и положение органа регуляции. Впрочем, у исполнительной механики, как правило, не бывает четкой позиции – в разные моменты регуляции он может находиться в любой позиции. Астатические регулирующие устройства чаще используют в сетях с высокой способностью к самовыравниванию рабочих показателей.

Изодромный регулятор газа

Если статическую систему контроля давления можно охарактеризовать как модель с жесткой обратной связью, то изодромные устройства взаимодействуют с упругими элементами восстановления характеристик. Изначально в момент фиксации отклонения от заданной величины регулятор займет позицию, которая соответствует значению, пропорциональному показателю отхождения от нормы. Если же давление не нормализуется, газовая арматура будет смещаться в сторону компенсации до тех пор, пока показатели не придут в норму.

С точки зрения характера эксплуатации изодромный регулятор можно назвать средним устройством между астатическими и статическими моделями. Но в любом случае отмечается высокая степень независимости данной регулирующей механики. Существует и разновидность изодромной арматуры с предварением. Данное устройство отличается тем, что скорость смещения исполнительного органа изначально превышает темпы изменения давления. То есть техника работает на опережение, экономя время на восстановление параметра. В то же время регуляторы с предварением затрачивают больше энергии от внешнего источника.

Особенности конструкции

Регулятор давления бензина – один из немногих элементов системы, который не управляется с электронного блока. Этот узел – полностью механический и его функционирование основано на перепадах давления. Хотя в системах без рециркуляции срабатыванием датчика заведует ЭБУ. Поскольку встречаются они не часто, то далее рассматривать такие узлы мы не будем.

Стоит отметить, что РТД работает не в строго заданных значениях, он подстраивается под режим работы двигателя. То есть, при надобности он увеличивает или уменьшает давление в системе, чтобы обеспечить оптимальное смесеобразование.

Конструктивно этот элемент очень прост и состоит из корпуса, на котором расположены штуцеры и выводы для подсоединения к системе питания. Внутри этот корпус разделен мембраной на две камеры – топливную и вакуумную.

К топливной полости подходят для вывода – один используется для подачи топлива в камеру, а второй ведет на магистраль слива бензина в бак (обратку). Но второй канал закрыт клапаном, который связан с мембраной.

Со стороны вакуумной полости установлена пружина, которая воздействует на мембрану, обеспечивая перекрытие канала слива клапаном. Эта камера посредством штуцера трубкой соединена с впускным коллектором.

Работа регулятора на разных режимах

Если рассмотреть упрощенно принцип действия, то он достаточно прост. Насос закачивает топливо в рампу, из которой оно попадает также и в топливную камеру регулятора. Как только сила давления превысит жесткость пружины, мембрана начинает перемещаться в сторону вакуумной полости, увлекая за собой клапан. В результате канал слива открывается и часть бензина стекает в бак, при этом давление в рампе падает. Из-за этого пружина возвращает клапан с мембраной на место, и обратный канал закрывается.

Но как уже упоминалось, РДТ подстраивается под режим работы мотора. И делает это он за счет разрежения во впускном коллекторе. Чем больше будет это разрежение, тем сильнее будет его воздействие на мембрану. По сути, создаваемый вакуум создает противодействующее усилие пружине.

На деле все выглядит так: для работы мотора на холостом ходу увеличение количества топлива не нужно, поэтому и не требуется и повышенного давления.

На этом режиме работы дроссельная заслонка закрыта, поэтому во впускном коллекторе воздуха недостаточно и создается разрежение. А поскольку вакуумная камера связана с коллектором патрубком, то вакуум создается и в ней. Под воздействием разрежения мембрана давит на пружину, поэтому для открытия клапана нужно меньше давления бензина.

При нагрузке же, когда дроссельная заслонка открыта, разрежения практически нет, из-за чего мембрана не участвует в создании усилия на пружину, поэтому давления требуется больше. Таким образом этот элемент функционирует в системе питания в зависимости от режима работы мотора.

Читайте также: