Устройство катушки тесла холодный ток

Опубликовано: 06.05.2024

О том, что физик Никола Тесла был гениальным изобретателем и значительно опередил свое время, слышали многие. К сожалению, по ряду причин большинство его изобретений так и не увидели свет. Но одно из самых неоднозначных – катушка Тесла, сохранилось до наших времен и нашло применение в медицине, военной отрасли и световых шоу.

Описание прибора

Если очень коротко, то катушка Тесла (КТ) – это резонансный трансформатор, создающий высокочастотный ток. Есть информация, что в своих экспериментах военные довели катушку до мощности в 1 Тгц.


Огромная катушка Тесла

Тут стоит затронуть такой вопрос – зачем Тесла ее изобрел? Согласно записям ученый работал над технологией беспроводной передачи электроэнергии. Вопрос крайне актуальный для всего человечества. В теории с помощью эфира две мощные КТ, размещенные в паре километров друг от друга, смогут передавать электричество. Для этого они должны быть настроены на одинаковую частоту. Также есть мнение, что КТ может стать своего рода вечным двигателем.

Внедрение данной технологии сделает все имеющиеся сегодня АЭС, ТЭС, ГЭС и прочие просто ненужными. Человечеству не придется сжигать твердые ископаемые, подвергаться риску радиационного заражения, перекрывать русла рек. Но ответ на вопрос, почему никто не развивает данную технологию, остается за конспирологами.


Настольная катушка Тесла, продающаяся сегодня в качестве сувенира

Принцип работы

Сегодня многие домашние электрики пытаются собрать КТ, при этом не всегда понимая принцип работы трансформатора Тесла, из-за чего терпят фиаско. На самом деле КТ недалеко ушла от обычного трансформатора.

Есть две обмотки – первичная и вторичная. Когда к первичной обмотке подводят переменное напряжение от внешнего источника, вокруг нее создается магнитное поле или, как его еще называют, колебательный контур. Когда заряд пробьет разрядник, через магнитное поле энергия начнет перетекать к вторичной обмотке, где будет образовываться второй колебательный контур. Часть накапливаемой в контуре энергии будет представлена напряжением. Ее величина будет прямо пропорциональна времени образования контура.

Таким образом, в КТ имеется два связанных между собой колебательных контура, что и является определяющей характеристикой при сравнении с обычными трансформаторами. Их взаимодействие создает ионизирующий эффект, из-за чего мы видим стримеры (разряды молний).

Устройство катушки

Трансформатор Тесла, схема которого будет представлена ниже, состоит из двух катушек, тороида, защитного кольца и, конечно, заземления.


Эскиз настольной КТ

Необходимо рассмотреть каждый элемент в отдельности:

  • первичная катушка располагается в самом низу. К ней подводится питание. Она обязательно заземляется. Делается из металла с малым сопротивлением;
  • вторичная катушка. Для обмотки используют эмалированную медную проволоку примерно на 800 витков. Таким образом витки не расплетутся и не поцарапаются;
  • тороид. Данный элемент уменьшает резонансную частоту, накапливает энергию и увеличивает рабочее поле.
  • защитное кольцо. Представляет из себя незамкнутый виток медного провода. Устанавливается, если длина стримера больше длины вторичной обмотки;
  • заземление. Если включить незаземленную катушку, стримеры (разряды тока) не будут бить в воздух, а создадут замкнутое кольцо.

Самостоятельное изготовление

Итак, простейший способ изготовления катушки Теслы для чайников своими руками. Часто в интернете можно увидеть суммы, превышающие стоимость неплохого смартфона, но на деле трансформатор на 12V, который даст возможность насладиться включением светильника без использования розетки, можно собрать из кучи гаражного хлама.


Что должно получиться в итоге

Понадобится медная эмалированная проволока. Если эмалированной не найти, тогда дополнительно понадобится обычный лак для ногтей. Диаметр провода может быть от 0.1 до 0.3 мм. Чтобы соблюсти количество витков понадобиться около 200 метров. Намотать можно на обычную ПВХ-трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также придется прикупить транзистор, например, D13007, пара резисторов и проводов. Неплохо было бы обзавестись кулером от компьютера, который будет охлаждать транзистор.

Теперь можно приступить к сборке:

  1. отрезать 30 см трубы;
  2. намотать на нее проволоку. Витки должны быть как можно плотнее друг к другу. Если проволока не покрыта эмалью, покрыть в конце лаком. Сверху трубы конец провода продеть через стенку и вывести наверх так, чтобы он торчал на 2 см выше поставленной трубы.;
  3. изготовить платформу. Подойдет обычная плита из ДСП;
  4. можно делать первую катушку. Нужно взять медную трубу 6 мм, выгнуть ее в три с половиной витка и закрепить на каркасе. Если диаметр трубки меньше, то витков должно быть больше. Ее диаметр должен быть на 3 см больше второй катушки. Закрепить на каркасе. Тут же закрепить вторую катушку;
  5. способов изготовления тороида довольно много. Можно использовать медные трубки. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления на выпирающем конце проволоки. Если проволока слишком хлипкая, чтобы удержать тороид, можно использовать гвоздь, как на картинке ниже;
  6. не стоит забывать про защитное кольцо. Хотя если один конец первичного контура заземлить, от него можно отказаться;
  7. когда конструкция готова, транзистор соединяется по схеме, крепится к радиатору или кулеру, далее нужно подвести питание и монтаж окончен.

В качестве питания установки многие используют обычную крону Дюрасель.


Трансформатор Тесла своими руками, простейшая схема

Расчет катушки

Расчет КТ обычно производится при изготовлении трансформатора промышленной величины. Для домашних экспериментов достаточно использовать приведенные выше рекомендации.

Сам расчет подскажет оптимальное количество витков для вторичной катушки в зависимости от витков первой, индуктивность каждой катушки, емкость контуров и, самое важное, необходимую рабочую частоту трансформатора и емкость конденсатора.


Пример расчета КТ

Меры безопасности

Собрав КТ, перед запуском нужно принять некоторые меры предосторожности. Во-первых, нужно проверить проводку в помещении, где планируется подключение трансформатора. Во-вторых, проверить изоляцию обмоток.

Также стоит помнить, о простейших мерах предосторожности. Напряжение вторичной обмотки в среднем равняется 700А, 15А для человека уже смертельно. Дополнительно стоит подальше убрать все электроприборы, попав в зону работы катушки, они с большой вероятностью сгорят.

КТ ­– это революционное открытие своего времени, недооцененное в наши дни. Сегодня трансформатор Тесла служит лишь для развлечения домашних электриков и в световых представлениях. Сделать катушку можно самостоятельно из подручных средств. Понадобятся ПВХ труба, несколько сотен метров медного провода, пара метров медных труб, транзистор и пара резисторов.

Нельзя сказать, что изготовление катушки Тесла своими руками – простая задача. Необходимо знать ее устройство, принцип действия. Подбор материалов также важен, как и правильность расчетов. Однако, даже не имея образования инженера-электротехника, собрать прибор можно, если действовать согласно инструкции, приведенной ниже. Перед началом работ ознакомьтесь с теоретической частью, чтобы понимать, что и зачем вы делаете. В остальном процедура не составит труда.

Описание прибора

Предполагалось, что если разместить два устройства на удалении друг от друга, электричество от первой катушки можно передать на другую. Единственное условие – обе должны иметь идентичные технические параметры. Более того, амбициозность Тесла позволяла ему надеяться, что таким образом можно создать вечный двигатель. И если бы у него все получилось, люди смогли бы отказаться от использования АЭС, ТЭС и ГЭС, а проблема экологии разрешилась сама собой. Тем не менее, продолжения разработка не получила. Причина тому до сих пор неизвестна.

Принцип работы

Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.

Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.

Устройство катушки

Составляющих минимум. Для сборки помимо первичной и вторичной обмотки потребуется тороид, защитное кольцо, диэлектрический короб и терминал. Чтобы лучше разобраться, как сделать катушку Тесла, необходимо подготовить все необходимое. А для большего понимания процесса рассмотрим каждый элемент катушки отдельно:

  • Первичная обмотка крепится внизу. Заземление обязательно. Также нужно предусмотреть разъемы для крепления проводов от источника питания.
  • Вторичная обмотка. Изготавливают из медной проволоки, покрытой эмалью. Примерное количество витков – 800. Важно, чтобы обмотка не расплеталась.
  • Тороид. Задача данного элемента – снизить рабочие показатели резонансной частоты. Цель – увеличить характеристики рабочего поля.
  • Изолятор. Его еще называют защитным кольцом. Это разомкнутый медный контур, устанавливаемый для случаев, когда длина вторичной обмотки меньше чем у стримера.
  • Заземление. Здесь дело не только в безопасности. Отсутствие «земли» приводит к тому, что заряды уходят в воздух, а не образуют замкнутые кольца.

Первичная обмотка изготавливается из проволоки большего сечения. Металл должен иметь малое сопротивление.

Расчет катушки

Тем, кто собирает трансформатор Тесла своими руками в домашних условиях, рассчитывать ничего не придется. Ниже в описании будут приведены все рекомендации с учетом параметров каждого из элементов. Но если работы ведутся в промышленных условиях, инженеры тщательно просчитывать множество параметров. Главное, что нужно знать – главное правильно рассчитать число витков обмоток. Есть взаимосвязь между количеством оборотов первичное и вторичной катушки.

Невозможно создать рабочее устройство, не зная индуктивности каждой из них и емкости контуров. Также просчитывается рабочая частота трансформатора и емкость конденсатора. Для любознательных читателей есть возможность сделать это своим умом. Формула и схема есть на сайте. А ниже приведена пошаговая инструкция с указанием конкретных параметров, и достаточно просто следовать алгоритму действий. Но перед этим подготовьте все необходимое с теми же характеристиками, которые указаны в описании процесса сборки.

Самостоятельное изготовление катушки Тесла по схеме

При монтаже трансформатора Тесла схема реализуется следующим образом:

  • Берем ПВХ-трубу, и отрезаем кусок длиной 300 миллиметров.
  • Наматываем на трубку медную проволоку. Если она не имеет эмалированного покрытия, после окончания работы обмотку покрывают лаком. Витки плотно прижаты друг к ругу, а концы продеты сквозь отверстия в трубе и выведены на 20 мм. каждый. Контакты делают сверху.
  • Основанием послужит конструкция из ДСП. Диэлектрическая платформа должна быть устойчивой. Поэтому лучше сделать ее шире, чем диаметр элементов, размещаемых на опоре.
  • Первичная обмотка – это обычно три с половиной витка. Материал – медная трубка. Важно прочно закрепить деталь на опоре. Используя трубку малого диаметра можно делать больше витков. Диаметр контура должен быть больше, чем у первичной катушки приблизительно на 30 мм.
  • Тороиды бывают разные. Одни используют всю тот же медный профиль круглого сечения. Другие мастера берут алюминиевую гофру. В последнем случае для крепления используют железную перекладину, монтируемую в местах вывода контактов вторичного контура.
  • Один конец первичной цепи заземляют. Если такой возможности нет, устанавливают защитное кольцо из материала, не проводящего электричество. Можно использовать фрагмент пластиковой трубы.

На завершающем этапе транзистор соединяют согласно схеме. Конструкция оснащается радиатором или кулером. Теперь можно подключать элемент питания. Обычно используют обычную крону.

Подбор материалов и деталей

Чтобы работа катушки Николя Тесла была эффективной, необходимо побеспокоиться о качестве примененных материалов. Проволока и медная трубка должны быть цельными. Счаливание, пайка приведут к тому, что устройство будет работать некорректно. Наличие эмалированного покрытия на проводе крайне желательно. Если он используется вторично, скорее всего оно повреждено. Заранее приобретите лак, который нанесите на вторичную обмотку. Основание может быть изготовлено не только из ДСП, а штатив не только из ПВХ. Главное, чтобы они не проводили электричество.

Если говорить конкретней, то выбор материалов и узлов предполагает следующие условия:

  • Источник питания должен выдавать от 12 до 19 Вольт. Подходит автомобильный или мотоциклетный аккумулятор. Можно использовать зарядку от ноутбука. Также пользуются понижающим трансформатором, если он оснащен диодным мостом для преобразования переменного тока в постоянный.
  • Площадь сечения проволоки, используемой для сборки вторичной катушки, – от 0,1 до 0,3 квадратных миллиметров. Количество оборотов от 700 до тысячи.
  • Терминал – это дополнительная емкость на вторичном контуре. Если стримеры отсутствуют, необходимости в нем не возникает. Тогда выводят конец контура на 0,5-5,0 см. вверх.

Вместо лака можно использовать краску. Желательно, чтобы лакокрасочное покрытие было жаростойким. Помните, что устройство склонно к перегреванию. Оголенные провода – причина появления неконтролируемых зарядов, способных убить человека, а приборы, находящиеся в комнате, и подключенные к электросети, попросту сгорят.

Сборка катушки Николя Тесла по инструкции

Сразу изготовьте все необходимое. Намотайте проволоку на трубу, покройте лаком, дайте просохнуть. Изготовьте первичную обмотку, диэлектрическое основание, защитное кольцо. Затем приступайте к монтажу. Установите первичную катушку на основу. Наденьте и закрепите первичный контур. Смонтируйте остальные элементы. Подсоединять источник питания лучше через выключатель. Причем делается это в последнюю очередь, когда катушка Теска полностью собрана. Пользуйтесь принципиальной схемой.

Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.

Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

Вторая катушка и Cs образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

Главные свойства катушки Тесла:

  • Частота второго контура.
  • Коэффициент обеих катушек.
  • Добротность.

Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор.

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Главные элементы катушки Тесла

В разных конструкциях основные черты и детали общие.

  • Тороид – имеет 3 опции.Первая – снижение резонанса.
    Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
    Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
    Тороиды можно изготовить из гофры и других материалов.
  • Вторичная катушка – базовая составляющая Тесла.
    Длина в пять раз больше диаметра мотки.
    Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
    Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
    Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
  • Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
  • Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
    Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
    Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
    Эти обмотки изготавливают в виде цилиндра, конуса.
  • Заземление – это важная составляющая часть.
    Стримеры бьют в заземление, замыкают ток.
    Будет недостаточное заземление, то стримеры будут ударять в катушку.

Катушки подключены к питанию через землю.

Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».

Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.

Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.

Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.

Катушка Тесла своими руками

Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.

Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.

Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.

Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.

Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.

Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.

Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.

Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.

Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.

  • Два провода скрепляются, оголенные концы были повернуты в сторону.
  • Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
  • Подключается питание катушке Тесла своими руками.
  • Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
  • Заземление второй катушки.

Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.

Безопасность

Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мерах защиты.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифилярная катушка Тесла

Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.

Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.

Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

image

Пару лет назад ко мне в СПб приехал C0NTEMPLATOR, он был в восторге от стоявшей у меня тогда полумостовой DRSSTC и выразил желание заиметь подобное чудо себе на дачу для развлечения гостей. В общем-то эта просьба успела постепенно забыться, но одним погожим сентябрьским днем мне нечего было делать и хотелось чего-то эпичного.

И я решил собрать SGTC (Spark Gap Tesla Coil), потому как 1)цена компонентов стремится к нулю 2)постройка и отладка проста и весела 3)вероятность ошибки — минимальна и почти ничем не грозит. Тем более что не одной нормальной катушки на разряднике я до этого так и не собрал.
Я не буду описывать принципы работы резонансного трансформатора и копипастить описание генератора на искровом промежутке для того, чтобы статья казалась умнее и больше. Только матчасть, только хардкор!

Часть первая — корпус

image

Скажу сразу — шасси у меня уже было от одного из старых, так и не законченных проектов. Самый распространенный вариант — взять две советские круглые табуретки и разломать их, хе-хе. Далее по желанию скрепить седалища табуреток саморезами и какой-то матерью. По середине доской высотой 350мм, шириной в диаметр, толщиной 15-20мм и тремя четырьмя досками по окружности, дабы предать конструкции жесткость. Для монтажа стоит использовать уголки например и саморезы.

image

Можно взять не табуретки, а кошерный толстый электротехнический текстолит, которым выполняется монтаж панелей в электрошкафах, но он может встать вам в копеечку, если вы конечно не купите его за бутылку у электрика Васи.

image

Крепления для первичной обмотки можно выполнить при помощи деревянного бруска 22х75, вспомнив уроки труда в школе, хе-хе.

image

(да-да, веса линий для слабаков, фиг его знает, почему оно так конвертировалось, но вроде читабельно).

Часть вторая. Монтаж первички.

Саму обмотку лучше делать из медной шины шириной 1.5х25мм, метров 8 можно купить за вполне вменяемые деньги.

1) Изготавливаем 6 штук креплений
2) Сажаем их на эпоксидку (ну или на столярный клей там например) на верхнюю табуретку 3) берем шину, с одной стороны сверлим отверстие, пайкой закрепляем кусок медного провода длинной эдак 400мм, сечением от 25 квадратов.
3) Укладываем шину в 8 витков, начиная с центра, выведя провод из начала через отверстие в верхнем седалище бывшей табуретки в то место, где у нас будет мотор с диском.
4) Поверх ту-же эпоксидку клеим деревянный брусок толщиной 10мм и ширной и 22мм толщиной для окончательной фиксации шины.
5) Сверху планки, что прикреплена на двух саморезах, крепим стяжками\проволокой\чем придется не замкнутый круг из медной трубки.
6) Proffit!

Часть третья. Вторичная обмотка.

Берем провод ПЭВ, диаметром 0.5мм, берем канализационную трубу, диаметром 16 мм(оранжевая такая), мотаем виток к витку до достижения высоты намотки в 400мм, покрываем получившееся безобразие эпоксидкой в несколько слоев. Можно использовать провод ПЭЛШО в шелковой изоляции (если сможете его найти, лол), добротность катушки снизится из-за увеличения расстояния между витками, но возрастет электрическая прочность, его проще покрывать эпоксидкой и после покрытия катушка прикольно-чОрно-готишно выглядит. Все это звучит легко, но без токарного станка с маленькими оборотами и желательно плавным пуском долго и гемморно.
В качестве станка вы можете использовать своего товарища и швабру, дыа.

Сверху вставляем стандартную заглушку(алярм! Вы же не отпилили расширение трубы для установки заглушки?), в заглушке делаем дырку (не отверстие, а имено дырку! Паяльником, да-да), в нее крепим через шайбы шпильку M6, снизу подключаем верхний конец провуда к шпильке, потом переварачиваем катушку и заливаем внутрь трубы эдак поллитра эпоксидки, гы.

Снизу припаиваем намоточный провуд к провуду в силиконовой изоляции длинной эдак 300мм, крепим через два отверстия, изолируем, proffit.

image

Мсье ее еще и покрасил алкидной эмалью из баллончика. Потому что мог. Как оказалось, это было, кхм, лишним, но об этом позднее.

Часть четвертая. Электромонтаж.

image

Классная, мегапонятная схема этого высокотехнологичного девайса.

Самая главная часть катушки, это, гы, задающий генератор, помеченный на схеме как F2 Он выполнен по последнему слову техники начала 20 века. Конструкционно он представляет собой асинхронный двигатель 2750 об/мин, на валу которого закреплен текстолитовый диск диаметром ок 130мм, толщиной 8мм. на расстоянии 10 мм от края диска просверлены 12 отверстий, в которые вставленны латунные шпильки, закрепленные болтами с двух сторон.

image

Ахтунг! Алярм! Аттеншн! Доверьте изготовление диска дяде-токарю, в противном случае у вас есть неиллюзорный шанс получить гайкой в лоб. Или диском. Или еще чем. C двух сторон от диска — два медных электрода. Конструкционно — просто два прутка, обжатые в шины, шины — на болтах через изоляторы в центральную доску, дабы ослабив болты можно было изменять расстояние разрядника. Расстояние — чем меньше тем лучше. Но чтоб не било. Идеально — меньше миллиметра. Двигатель подключен через кондер напрямую в сеть.

Далее — MMC (дословно расшифровывается как «много маленьких конденсаторов»), C1 на схеме. Но настоящие пацаны юзают большие конденсаторы и их немного, да-да.

image

Лично я использовал 6 шт к75-25, 10кВ, 10нФ. Краткое лирическое отступление — в контуре C1 — L1, коммутируемом разрядником, в импульсе гуляют килоамперные токи, по этому отложи свои проводки, юзернейм. Коммутация должна быть соответствующая — максимально короткие соединения, пайка шин кастрюльным паяльником, болтовые соединения, провода от 25 квадратов и больше. А остальное уже можно как прийдется, но в пределах разумного.

Питание. Тут все просто — ломаем мамкину микроволновку, хабарим у соседей и ломаем еще одну. Ну или честно покупаем два ВВ трансформатора из них. Два трансформатора монтируем на общей, желательно стальной или не очень станине, главное — связать электрически магнитопроводы, на которые выведен холодный конец вторичной обмотки трансформаторов. Получившуюся среднюю точку — через делитель на пленочных конденсаторах в 10-50нФ кидаем на фазу и ноль сети, это спасет МОТы от последствий ударов разрядов в корпус. Здоровый сетевой дроссель L4 на 6-8 Гн нафиг не нужен если вы не питаете катушку выпрямленным удвоенным напряжением, так как прибавляет к разряду мало, изготавливается долго и гемморно (виток-к-витку, прокладки из фторопласта\масляной бумаги между слоями), мотать много.

Фильтровые дроссели и емкости. Дабы всякие обратные выбросы не лезли в нежную вторичную обмотку трансформаторов, пришлось изготовить два дросселя по 500-600 витков каждый на оправе из трубки 50мм. Внутрь трубки напихал битого феррита. Также перед и после ферритов желательно повесить два конденсатора по 1000пФ, каких-нибудь дисковых КВИ-3
Фильтра на отличненько влезли в тумбу, где им и самое место.

image

Часть пятая. Пусконаладка

Конструкция практически готова, остается только изготовить торроид. Я мог бы конечно выложить чертежи фирменного торроида имени Зерга, но боюсь он придет ко мне в дом и убьет мою собаку(хоть у меня и нет собаки, но вдруг притащит!). Так что например его можно изготовить из вент.трубы диаметром 150мм и притянуть его сверху металлическим диском через шпильку на верх вторички.

image

В результате получается вот такая, местами даже симпатичная конструкция. Нижний отвод со вторичной катушки в силиконовом проводе пропускаем под витками первички и припаиваем к разрядному кольцу из медной трубки. От этого кольца спускаем провод заземления, который нужно повесить на хорошую, годную землю.

Второй шиной от конденсаторов нужно поискать тот виток вторичной обмотки, при подключении которого разряды мощнее, я просто подключил к 6 витку и припоял так, понадеявшись на расчеты.

И так включаем мотор вращающегося разрядника, проверяем отсутствие дребезга и вибрации, включаем питание.

Если все хорошо, то девайс выдаст годные, длинной в пару метров, разряды с очень специфическим и громким шумом. Если нет — проверьте фазировку трансформаторов, возможно они включены в противофазе.

По идее нужно было облагородить блок трансформаторов, сделать автоматику на реле времени для включения разрядника, а только затем уже подачи напряжения, но на тот момент у меня не нашлось нормальных реле (эта штука кушает от 2 до 4 кВт за милую душу), да и было лень.

В последствии девайс мною был перевезен в МСК, презентован, а оттуда уже на дачу к товарищу, где был заново собран и запущен.

image

image

image

Правда в последствии или сырой погоды или фигового покрытия вторичной обмотки или всего вместе она прогорела к чертям собачьим и недавно мне пришлось вновь вылетать, дабы перемотать катушку, а старая была торжественно разбита к чертям собачьим (на самом деле нет, просто снимать эпоксидку при помощи ударов доской — очень фиговая идея, лол)

image

Девайс с новой катушкой по прежнему успешно работает и радует товарища, который правда пихает на торроид всякоэ, но иногда прикольно получается.

В 1896 году ученый получил патент на свое изобретение – резонансный трансформатор. Он образует высокочастнотное повышенное напряжение, то есть ток высокого потенциала.

История создания начинается с опытов Тесла по доказательству существования эфира. Эфир представляет собой физическую среду, некое поле или вещество, заполняющее просторы Вселенной. Именно он, согласно идеям Тесла, отвечал за распространение гравитационного и элетромагнитного взаимодействия. До появления теории относительности концепция эфира была распространена в физике, а после этого перестала разрабатываться.

Ученый хотел использовать эфир как источник энергии, что позволило бы отказаться от проводов для передачи и распространять электричество по всему миру. Он хотел установить две гигантские катушки на северном и южном полюсах Земли. Глубоко после смерти Тесла это направление не разрабатывалось, его считали слишком уж странным ученым, а идеи – провокационными. Но, скорее всего, причина была в нежелании физика учитывать экономическую сторону при разработке идей, не рекламировал выгоду для корпораций от их реализации.

Архивы физика были частично утеряны после его смерти, а наступление эры вакуумных изобретений похоронило мысль о двух катушках на полюсах. Неизвестно, удалось ли ему получить или же доказать возможность создания бесконечного источника энергии.

Принцип работы катушки Тесла

Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.

Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.

Для чего нужна катушка Тесла сегодня?

Трансформатор может использоваться для создания зрелищных молний длиной много метров, что обусловливает его популярность как оборудования для зрелищ. Применяют его и для управления без проводов, беспроводной передачи энергии, а когда-то широко использовали, как тонизирующие и общеукрепляющее медицинское средство. Катушка Тесла поджигала газовые лампы, помогала искать места утечки в вакуумной системе. Существуют приборы, способные играть музыку.

Принцип действия устройства использован при создании энергосберегающих люминесцентных ламп.

Устройство бифиляра

Бифилярная катушка Тесла изготовлена в виде плоской спирали или соленоида. Бифиляр, в отличии от обычной катушки, имеет 4 выхода. Так как катушка наматывается двумя проводами, то получаются 2 выхода в середине катушки и 2 с краю. В отличии от обычной катушки, имеющий всего 2 выхода — один изнутри, а другой снаружи.

Намотка может быть последовательной и параллельной. Соединение проводов в катушке также возможно как последовательное, так и параллельное. Отсюда возникает 4 возможные варианта использования катушек:

  • Намотка проводов последовательная
  • Намотка проводов параллельная
  • Намотка последовательная
  • Намотка параллельная

В бифиляре Теслы соединение производится с началом нечетных витков с концом чётных. Это позволяет сильно увеличить добротность и плотность намотки. Такое устройство бифиляра Тесла определяет его уникальные свойства.

Иногда это устройство путают с трансформатором Тесла, Но трансформатор Тесла, который ещё называют катушкой Тесла, не изготавливается методом бифиляра. Подробнее о нём можно прочитать в этой статье.

Из чего состоит катушка Тесла

Что такое катушка тесла? Это две обмотки с различным числом витков, но без общего сердечника. Она повышает напряжение на выходе в десятки, а то и сотни раз.

Катушка Тесла состоит из:

  1. Источника питания.
  2. Конденсатора.
  3. Трансформатора.
  4. Тороида.
  5. Первичной и вторичной обмотки.
  6. Заземления.
  7. Разрядника.

Рассмотрим основные элементы:

  • Тороид. Катушка Тесла сделана в форме Тора или тороидальной фигуры. Это понятие нам известно из геометрии, где тором называется фигура, которая получается при вращении вокруг оси образующей окружности. Намного нагляднее этого определения обычный бублик или пончик, являющиеся тороидными фигурами. Для катушки тороид делается из алюминиевой гофры и выполняет функцию аккумулирования энергии. Он так же понижает резонансную частоту, формирует электростатическое поле, отталкивающее стримеры от вторичной обмотки.
  • Вторая основная составляющая – это вторичная обмотка из 800-1200 витков на трубе ПВХ. Количество витков определяет диаметр провода. Соотношение длины к диаметру составляет четыре или пять к одному. Покрытие сверху лаком убережет обмотку от расползания.
  • Первичная обмотка имеет низкое сопротивление по причине того, что по ней проходит мощный поток тока. Изготавливается она из провода с сечением более 6 мм. Форма бывает разной: конической, цилиндрической или плоской.
  • Защитное кольцо является витком плоской формы из заземленного медного провода. Оно необходимо, чтобы стример не повредил прибор, попав из тороида в первичную обмотку.
  • Заземление используется, чтобы замкнуть ток, иначе стримеры ударят в само устройство.

Устройство бифиляра

Бифилярная катушка Тесла изготовлена в виде плоской спирали или соленоида. Бифиляр, в отличии от обычной катушки, имеет 4 выхода. Так как катушка наматывается двумя проводами, то получаются 2 выхода в середине катушки и 2 с краю. В отличии от обычной катушки, имеющий всего 2 выхода — один изнутри, а другой снаружи.

Намотка может быть последовательной и параллельной. Соединение проводов в катушке также возможно как последовательное, так и параллельное. Отсюда возникает 4 возможные варианта использования катушек:

  • Намотка проводов последовательная
  • Намотка проводов параллельная
  • Намотка последовательная
  • Намотка параллельная

В бифиляре Теслы соединение производится с началом нечетных витков с концом чётных. Это позволяет сильно увеличить добротность и плотность намотки. Такое устройство бифиляра Тесла определяет его уникальные свойства.

Иногда это устройство путают с трансформатором Тесла, Но трансформатор Тесла, который ещё называют катушкой Тесла, не изготавливается методом бифиляра. Подробнее о нём можно прочитать в этой статье.

Конфигурации трансформатора

За годы, прошедшие после изобретения трансформатора, появилось множество его конфигураций.

  • SGTC – катушка имеет классическое устройство и работает на искровом разряде. Позволяет получить длинный стример без добавочных эффектов. Элементом коммутации выступает разрядник, выполненный из двух кусков толстого проводника. Когда речь идет про мощные устройства, то применяют вращающиеся разрядники и электродвигатели.
  • VTTC – катушка Тесла, созданная на базе электронной лампы, выступающей коммутирующим элементов. Может работать в постоянном режиме, выдавая длинные, толстые разряды. Стример имеет форму факела.
  • SSTC – ключом является полупроводниковый элемент – мощный транзистор. Может работать без перерывов, порождая стимеры любой формы и играя музыку.
  • DRSSTC – имеет два контура резонанса. Ключами являются полупроводниковые компоненты. Очень сложен в управлении, но дает поистине впечатляющие эффекты.

История

Бифилярная катушка упоминается Николой Тесла в патенте Соединенных Штатов под номером 1894 года. Тесла объясняет, что при использовании катушки для электромагнитов её самоиндукция может быть нежелательна и может быть нейтрализована как с помощью подключения внешнего конденсатора, так и с помощью собственной ёмкости катушки специальной конструкции, которой и посвящён патент. Бифилярная катушка имеет бо́льшую собственную ёмкость, чем обычная, таким образом можно сэкономить на стоимости конденсаторов, — говорится в патенте. Следует отметить, что это применение бифилярной катушки отличается от современных.

Чем уникальна катушка Тесла

Физик, применив устройство, при входной частоте в пару сотен килогерц способен получить напряжение размеров в 15 миллионов вольт и более. Собрать его можно даже дома, ведь все необходимые элементы доступны для покупки любому, достаточно посетить строительный гипермаркет и магазин электроники.

Получить можно следующие эффекты как вместе, так и по отдельности:

  1. Дугообразный разряд, характерный при использовании ламповых трансформаторов.
  2. Спарк или искры, похожий на пучок ярких веточек, которые изменяются или исчезают. Выходит из прибора на землю.
  3. Стример – тонкий направленный в воздух светящийся поток, в составе которого есть свободные электроны и атомы газа.
  4. Коронный разряд – очень красивое голубоватое свечение воздушных ионов, находящихся в электрическом поле. Образуется вокруг устройства.

Свойства бифилярной катушки Тесла

Бифилярная катушка Теслы была изобретена с целью увеличения собственной ёмкости, чтобы была возможно передавать большую мощность электрического тока. Целью изобретения Теслы было избавиться от применения дополнительных конденсаторов в приборах. Они применялись для нейтрализации самоиндукции, которая возникает в катушках и проводниках.

Изобретение бифилярной катушки Теслы позволило добиться нужного эффекта. Изготовленные по такой технологии катушки не обладают самоиндукцией. Кроме того, емкость такой катушки, полученная в результате такой конструкции, распределяется равномерно. И изменяя форму катушек и их размер, можно легко изменять полученную емкость.

Эти свойства бифиляра было впоследствии применены Александром Мишиным, который разработал свой прибор на основе этой технологии Теслы. Про катушку Мишина можно прочитать в этой статье.

Электромагнитная индукция ч.3. Н. Тесла и его загадки

Один из ранних патентов Николы Тесла описывает новый способ намотки катушек. Этот способ он назвал бифилярной намоткой, т.к. катушка мотается сразу двумя параллельными проводами и считал эту намотку очень важным изобретением:

«Бифилярная катушка — электромагнитная катушка, которая содержит две близко расположенных, параллельных обмотки. Есть четыре типа бифилярно намотанных катушек: 1. параллельная намотка, последовательное соединение; 2. параллельная намотка, параллельное соединение; 3. встречно намотанная катушка, последовательное соединение; 4. встречно намотанная катушка, параллельное соединение. Некоторые бифилярные катушки намотаны так, что ток в обеих обмотках течёт в одном и том же направлении. Магнитное поле, созданное одной обмоткой складывается с созданным другой, приводя к большему общему магнитному полю. В других — витки расположены так, чтобы ток протекал в противоположных направлениях. Поэтому магнитное поле, созданное одной обмоткой равно и направлено противоположно созданному другой, приводя к общему магнитному полю равному нулю. Это означает, что коэффициент самоиндукции катушки — ноль

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Читайте также: